
These are some concise lecture summaries of the course CS229BR – Analysis of Boolean
Functions taught at Harvard University in Fall 2022. If you find any mistakes please feel free to
email chinho.lee@ncsu.edu.

Contents

1.1 Introduction . 3

1.2 Notation . 3

1.3 Fourier expansion . 3

1.3.1 The parity functions . 4

2.1 Basic Identities . 6

2.2 Linearity Testing . 7

2.2.1 Proof of Item 2 in Theorem 2.13 . 8

2.2.2 The BLR algorithm for linearity testing . 9

3.1 Social choice . 10

3.1.1 Examples of voting rules . 10

3.1.2 Properties of voting schemes . 11

4.1 Influence . 13

4.1.1 Formula for Influences . 14

5.1 Total Influence . 16

5.1.1 Boundary of f . 16

5.1.2 Average sensitivity . 16

5.1.3 Spectral sampling . 17

5.2 Noise . 17

5.2.1 Noise operator . 18

6.1 Low-degree functions . 20

6.2 Fourier concentration . 21

6.2.1 Measures of closeness . 21

7.1 Learning low-degree functions . 24

7.1.1 LMN algorithm . 24

8.1 Goldreich–Levin Theorem . 27

8.1.1 Kushilevitz–Mansour algorithm . 27

8.2 DNFs . 29

8.2.1 Total influence of DNF . 30

9.1 Random restrictions . 32

10.1 Switching Lemma . 34

10.1.1 Succinct encoding of witnesses . 35

10.1.2 An example . 36

11.1 Multi-switching lemma . 38

12.1 Spectral concentration of DNFs . 41

13.1 Spectral concentration of small-depth circuits . 42

13.1.1 Proof of Theorem 13.3 . 43

14.1 Bonami’s lemma . 45

14.1.1 Low-degree polynomials are reasonable . 46

15.1 Hypercontractivity . 48

15.1.1 Hypercontractivity . 49

15.1.2 Small-set expansion of the noisy hypercube 50

1

chinho.lee@ncsu.edu

16.1 The Fourier spectrum of small sets . 52
16.2 FKN theorem . 53

16.2.1 Bounding the variance of ℓ2 . 54
17.1 KKL theorem . 56
18.1 Friedgut Junta Theorem . 59
18.2 Pseudorandom generators . 60
19.1 Bounded independence plus noise . 62

19.1.1 Connection to space-bounded computation 64
20.1 Polarizing random walk . 66
21.1 Fourier Growth . 70

2

CS229BR: Analysis of Boolean Functions Lecture 1
Harvard University Sept 06 2022

1.1 Introduction

This course is about Boolean functions, functions of the form

f : {0, 1}n → {0, 1}.

Here are some examples where Boolean functions appear:

1. Computational complexity: Given f : {0, 1}n → {0, 1}, we can study the computational
resources needed to compute f . For example, we can ask whether f can be computed by a
circuit of a certain size, or a communication protocol that exchanges a certain amount of
information.

2. Graph property: Given a graph G = (V,E), we want to know if G satisfies some graph
property, e.g. if G contains a 10-clique. We can think of it as a Boolean function, where the
number of input bits is the n :=

(|V |
2

)
many possible edges in G, and each input bit is an

indicator variable eu,v representing whether the edge between vertices u and v are present in
G, i.e.

eu,v =

{
1 if eu,v ∈ E

0 if eu,v ̸∈ E.

In our example, one can define f : {0, 1}n → {0, 1} as

f(e1,1, e1,2, . . . , e|V |,|V |−1) =

{
1 if G contains a 10-clique

0 otherwise.

3. Learning theory: Here we think of x1, . . . , xn as n binary attributes, and f is a concept.

4. Social choice theory: There are 2 candidates, represented by 0 and 1, and there are n voters
x1, . . . , xn, and f : {0, 1}n → {0, 1} can be viewed as a voting rule.

1.2 Notation

We will typically identify {0, 1} with the field F2 (and {0, 1}n with Fn
2). In particular, addition is

over F2, which is the same as XOR. For a finite set X, we use x ∼ X to denote the random variable
x sampled uniformly from the set X, that is, Pr[x = x] = 1

|X| for every x ∈ X.

1.3 Fourier expansion

Proposition 1.1. Every f : {0, 1}n → R has a degree-n multilinear polynomial representation.

Proof. This follows from interpolation. For each a ∈ {0, 1}n, we can write the point function
1a : {0, 1}n → {0, 1} defined by

1a(x) :=

{
1 if x = a

0 if x ̸= a.

as a degree-n multilinear polynomial. Now write f(x) =
∑

a f(a)1a(x).

3

We will often work with the domain {−1, 1}n. By a simple change of variable we have the
following corollary.

Corollary 1.2. Every f : {−1, 1}n → R has a degree-n multilinear polynomial representation.

Proof. Given ai, xi ∈ {−1, 1}, consider the mapping (1 + aixi)/2 ∈ {0, 1}.

Switching between {0, 1} vs. {−1, 1}. In this course we will always switch between {0, 1} and
{−1, 1}, and identify 1 ∈ {0, 1} and −1 ∈ {−1, 1} with “True”, and 0 ∈ {0, 1} and 1 ∈ {−1, 1} as
“False”. The following transformations are some convenient ways of switching between both domains.

1. {0, 1} ∋ x 7→ (−1)x ∈ {−1, 1}

2. {0, 1} ∋ x 7→ 1− 2x ∈ {−1, 1} and conversely {−1, 1} ∋ y 7→ (1− x)/2 ∈ {0, 1}.

Let us prove the following standard fact to illustrate how these transformations can be useful.

Fact 1.3. Prx∼{0,1}n [
∑n

i=1 xi = 1] = 1/2.

(Recall that we identify {0, 1}n with Fn
2 , so

∑
i is the same as

⊕
i.)

Proof. Applying both transformations, for every x ∈ {0, 1}n we have

n∑
i=1

xi =
1−

∏n
i=1(−1)xi

2
.

Now we take expectation on both sides, and use the independence of the xi’s and Exi∼{0,1}[(−1)xi] =
0.

Another equivalent way of viewing f : {0, 1}n → R is to think of it as a 2n-dimensional vector in
R{0,1}n , where coordinates are indexed by x ∈ {0, 1}n, and the x-th coordinate of f is f(x), in fact
you can see that whether the domain is {0, 1}n or {−1, 1}n does not matter: it is just a different
naming of the indices. Under this view, note that 1a : a ∈ {0, 1}n are simply the elementary basis,
i.e. 1 at position a and 0 everywhere else. (We will soon see that the monomials of {−1, 1}n also
form another basis.) This linear-algebraic view motivates the following definition of inner product
of two functions.

Definition 1.4. Given f, g : {−1, 1}n → R, we define the inner product of f and g by

⟨f, g⟩ := E
x∼{−1,1}n

[f(x)g(x)] = 2−n
∑

x∈{−1,1}n
f(x)g(x).

The normalization 2−n may seem odd at first, but it will soon be appreciated.

1.3.1 The parity functions

We will define χS : {−1, 1}n → {−1, 1} by

χS(x) :=
∏
i∈S

xi.

For ease of notation, we will also use xS to denote the monomial
∏

i∈S xi.

4

We will overload χS when the domain is {0, 1}n ≡ Fn
2 and define χS : {0, 1}n → {0, 1} as

χS(x) :=
∏
i∈S

(−1)xi = (−1)
∑

i∈S xi .

(These are also called the characters of Fn
2 .) We will often use the well-known 1-1 correspondence

between a subset S ⊆ [n] and an n-bit string α ∈ {0, 1}n, where αi = 1 if and only if i ∈ S and 0
otherwise. In that case, we have

χα(x) := (−1)⟨α,x⟩.

For two subsets S, T ⊆ [n], we sometimes use S + T to denote their symmetric difference S△T .
Because inner product is linear in its arguments, we have

Proposition 1.5. Let χS : {0, 1}n → {−1, 1} be a parity function. We have

1. χα+β(x) = χα(x) · χβ(x) for every α, β ∈ {0, 1}n.

2. χα(x+ y) = χα(x) · χα(y) for every x, y ∈ {0, 1}n.

We now show that the representation in Corollary 1.2 is unique.

Proposition 1.6. The 2n parity functions {χS}S⊆[n] are pairwise orthonormal, that is

⟨χS , χT ⟩ =

{
1 if S = T

0 if S ̸= T .
.

(Verify that this proposition indeed holds regardless of the domain of χS being {0, 1}n or
{−1, 1}n.)

Theorem 1.7. Every f : {−1, 1}n → R has a unique degree-n multilinear polynomial presentation

f(x) :=
∑
S⊆[n]

f̂(S)χS(x).

Proof. We will show that the parity functions {χS : S ⊆ [n]} form a basis of the vector space of all
functions of the form f : {−1, 1}n → R.

In Corollary 1.2, we showed that every f : {−1, 1}n → R has a degree-n multilinear polynomial
presentation. When the domain is {−1, 1}n, the monomials

∏
i∈S xi are actually the parity functions

χS(x). This shows the 2n parity functions span the space of {f : {−1, 1}n → R}.
It remains to show that {χS : S ⊆ [n]} are independent, this follows from their pairwise

orthonormality in Proposition 1.6.

The coefficients f̂(S) are called the Fourier coefficients of f .

5

CS229BR: Analysis of Boolean Functions Lecture 2
Harvard University Sept 08 2022

2.1 Basic Identities

Thanks to the orthonormality of the parity functions, there is an explicit formula for computing
f̂(S).

Proposition 2.1 (Fourier inversion formula). Suppose f : {−1, 1}n → {−1, 1} has the Fourier
expansion f(x) =

∑
S⊆[n] f̂(S)χS(x). Then f̂(S) := ⟨f, χS⟩ = Ex∼{−1,1}n [f(x)χS(x)].

Example 2.2. Compute the Fourier expansion of max2 : {−1, 1}2 → {−1, 1}. (Note that this is
just the AND2 function in disguise.)

We now show some basic identities.

Proposition 2.3 (Parseval’s identity). Let f : {−1, 1}n → R. Then ∥f∥22 := ⟨f, f⟩ = E[f(x)2] =∑
S⊆[n] f̂(S)

2.

Note that when f : {−1, 1}n → {−1, 1}, we have 1 = E[f(x)2] =
∑

S⊆[n] f̂(S)
2. A more general

identity is the following.

Proposition 2.4 (Plancherel’s identity). Let f, g : {−1, 1}n → R. Then ⟨f, g⟩ = E[f(x)g(x)] =∑
S⊆[n] f̂(S)ĝ(S).

Remark 2.5. The quantity ⟨f, g⟩ is sometimes called the correlation of f and g. To see this,
observe that for f, g : {−1, 1}n → {−1, 1}, we can write

E
x
[f(x)g(x)] = Pr[f(x) = g(x)]−Pr[f(x) ̸= g(x)]

= Pr[f(x) = g(x)] +
(
Pr[f(x) ̸= g(x)]−Pr[f(x) ̸= g(x)]

)
−Pr[f(x) ̸= g(x)]

= 1− 2Pr[f(x) ̸= g(x)]

= 2Pr[f(x) = g(x)]− 1.

The last inequality can be derived by replacing (Pr[f(x) ̸= g(x)]−Pr[f(x) ̸= g(x)]) with (Pr[f(x) =
g(x)]−Pr[f(x) = g(x)]). By rearranging we get

Pr[f(x) = g(x)] =
1

2
+

E[f(x)g(x)]

2
.

In complexity theory, we often ask the following question. Given a family F of Boolean functions, is
there a Boolean function g that is hard for F on average? That is, we want to minimize

max
f∈F

Pr[f(x) = g(x)].

When F contains both constant functions x 7→ 1 and x 7→ −1, one can see that 1/2 is always
achievable. Thus sometimes it is easier to bound E[f(x)g(x)] instead.

To state the next identity, we define the convolution of two functions. We define it in {0, 1}-notion
as it is more commonly defined. Again, one can define a {−1, 1} analogue by replacing addition
over F2 with multiplication.

6

Definition 2.6. Given f, g : Fn
2 → R, the convolution of f and g, denoted f ∗ g : Fn

2 → R, is

f ∗ g(x) := E
z∼Fn

2

[f(x+ z)g(z)].

To give some intuition, suppose f, g : {0, 1}n → [0, 1] are two probability mass functions on {0, 1}n.
Let F and G be two independent random variables sampled according to f and g, respectively. If
we consider the random variable F +G (over Fn

2), then we have

Pr[F +G = x] =
∑

z∈{0,1}n
Pr[F = x+ z]Pr[G = z]

= 2n E
z∼{0,1}n

[f(x+ z)g(z)].

Proposition 2.7 (Convolution). f̂ ∗ g(S) := f̂(S)ĝ(S).

Proposition 2.8 (Mean). E[f(x)] = f̂(∅).

The meaning of E[f(x)] can be very different depending on whether f has outputs {0, 1} or
{−1, 1}. For instance, for f : {−1, 1}n → {−1, 1}, we have

E[f(x)] = Pr[f(x) = 1]−Pr[f(x) = −1] = 2Pr[f(x) = 1]− 1 = 1− 2Pr[f(x) = −1].

On the other hand, for f : {−1, 1}n → {0, 1}, we have

E[f(x)] = E[f(x)2] = Pr[f(x) = 1].

Switching between {0, 1} and {−1, 1} outputs will be important and useful throughout the course.

Proposition 2.9 (Variance). Var[f] =
∑

∅̸=S⊆[n] f̂(S)
2.

Proof. Recall thatVar[f] := Ex[(f(x)−E[f(x)])2] = Ex[f(x)
2]−Ex[f(x)]

2. Apply Propositions 2.3
and 2.8.

Note that for f : {−1, 1}n → {−1, 1}, we have

Var[f] = 1−E[f]2

= (1 +E[f])(1−E[f])

=
(
1 + (2Pr[f(x) = 1]− 1)

)(
1− (1− 2Pr[f(x) = −1])

)
= 4Pr[f(x) = 1]Pr[f(x) = −1].

2.2 Linearity Testing

Definition 2.10. A function f : Fn
2 → F2 is linear if

f(x) =
∑
i∈S

xi for some S ⊆ [n]. (1)

We now show that Equation (1) is equivalent to

f(x+ y) = f(x) + f(y) for every x, y ∈ Fn
2 . (2)

7

Equation (2) follows easily from Equation (1). To see the other direction (that (2) implies (1)), first
observe that f (⃗0) = f (⃗0+0⃗) = f (⃗0)+f (⃗0) and thus f (⃗0) = 0. Now for each i ∈ [n], define ai := f(ei),
and we can prove by induction (using (2)) on the number of 1s in x that f(x) = ⟨a, x⟩ =

∑n
i=1 aixi.

Given blackbox access to a Boolean function f : Fn
2 → F2, that is, we are allowed to make queries

at x ∈ Fn
2 and is given f(x) in return. How many queries do we need to determine if f is linear?

It is not hard to see that any correct deterministic algorithm for linearity testing requires 2n

queries. So we will consider a relaxation the problem, which is testing if f is close to linear. One
can define various distance measures of closeness, we will use the following:

Definition 2.11. Two functions f, g : {0, 1}n → {0, 1} are ϵ-close if Prx∼{0,1}n [f(x) ̸= g(x)] :=
2−n

∑
x∈{0,1}n 1(f(x) ̸= g(x)) ≤ ϵ.

In other words, f and g disagrees on ϵ fraction of the points in {0, 1}n. Now we can define the
following generalization of Equation (1) of linearity.

Definition 2.12. A function f : Fn
2 → F2 is ϵ-close to linear if Prx∼Fn

2
[f(x) ̸=

∑
i∈S xi] ≤ ϵ for

some S ⊆ [n].

Do we have the same equivalence between (1) and (2) for our relaxed notion of linearity? The
answer is yes, and is given by the following result of Blum, Luby, and Rubinfeld.

Theorem 2.13 (Robust characterization of linearity). Let f : Fn
2 → F2 be a Boolean function. Then

1. if f is ϵ-close to linear, then Prx,y∼Fn
2
[f(x+ y) = f(x) + f(y)] ≥ 1− 3ϵ, and

2. if f is not ϵ-close to linear, then Prx,y∼Fn
2
[f(x+ y) = f(x) + f(y)] ≤ 1− ϵ.

Item 1 simply follows from the union bound, and we now prove the other direction.

2.2.1 Proof of Item 2 in Theorem 2.13

As in Fact 1.3, we will work over {−1, 1} instead of {0, 1}. Define F : Fn
2 → {−1, 1} by F (x) =

(−1)f(x). Observe that for every x, y ∈ Fn
2 ,

f(x+ y) = f(x) + f(y) ⇐⇒ f(x) + f(y) + f(x+ y) = 0

⇐⇒ F (x)F (y)F (x+ y) = 1

⇐⇒ 1

2
+

F (x)F (y)F (x+ y)

2
= 1

So taking expectation on both sides,

Pr
x,y∼Fn

2

[f(x+ y) = f(x) + f(y)] =
1

2
+

1

2
E

x,y∼Fn
2

[F (x)F (y)F (x+ y)] (3)

The expectation on the right hand side has a very simple expression in the Fourier coefficients of F .

Claim 2.14. Ex,y∼Fn
2
[F (x)F (y)F (x+ y)] =

∑
S⊆[n] F̂ (S)3.

Proof. Replace F (y) and F (x+ y) with their Fourier expansion.

8

Now recall that F̂ (S) = ⟨F, χS⟩ = E[F (x)χS(x)] is the correlation between F and some parity
function, which is equivalent to the distance between F and χS ,

F̂ (S) = E
x∼Fn

2

[
F (x)χS(x)

]
= 1− 2 Pr

x∼Fn
2

[
F (x) ̸= χS(x)

]
= 1− 2 Pr

x∼Fn
2

[
f(x) ̸=

∑
i∈S

xi

]
.

Since f is not ϵ-close to linear, the probability on the right hand side is at least ϵ for every S ⊆ [n].
Hence, we have F̂ (S) ≤ 1− 2ϵ for every S. Recall that

∑
S⊆[n] F̂ (S)2 = 1, and so∑

S⊆[n]

F̂ (S)3 ≤ max
S⊆[n]

f̂(S) ·
∑
S⊆[n]

f̂(S)2 = max
S⊆[n]

f̂(S) ≤ 1− 2ϵ. (4)

Plugging Equation (4) into Equation (3) completes the proof.

2.2.2 The BLR algorithm for linearity testing

Theorem 2.13 suggests the following 3-query randomized algorithm for testing ϵ-closeness of linearity:

1. Sample x,y ∼ Fn
2 uniformly at random.

2. Query f(x), f(y), and f(x+ y).

3. If f(x) + f(y) = f(x+ y), accept. Otherwise, reject.

The correctness of this algorithm is an immediate corollary of Theorem 2.13

Corollary 2.15. The BLR algorithm satisfies the following property:

1. (Completeness) If f is linear, then the algorithm always accepts.

2. (Soundness) If f is ϵ-far (i.e., not ϵ-close) to linear, then the algorithm accepts with probability
1− ϵ.

By repeating the algorithm independently for O(log(1/δ)/ϵ) times, we can bring down the
acceptance probability in the soundness to δ.

9

CS229BR: Analysis of Boolean Functions Lecture 3
Harvard University Sept 13 2022

3.1 Social choice

We will study several important concepts in Boolean function analysis. We will introduce these
concepts through the lens of social theory theory. We will work with f : {−1, 1}n → {−1, 1}, where
we think of the inputs x1, . . . , xn as n voters and f as some voting rule determining the outcome of
an election with 2 candidates −1 and 1.

3.1.1 Examples of voting rules

First let us consider some common examples of voting rules.

1. The majority function is defined as Maj(x1, . . . , xn) = sgn(x1 + · · ·+ xn). To avoid ties, we
will typically assume n is odd.

2. The AND function is defined as ANDn(x1, . . . , xn) :=

{
−1 if x1 = · · · = xn = −1

1 otherwise.

3. The OR function is defined as ORn(x1, . . . , xn) :=

{
1 if x1 = · · · = xn = 1

−1 otherwise.

4. A dictator is defined as χ{i}(x1, . . . , xn) = xi for some i ∈ [n].

5. A k-junta for k ∈ [n] is a function f only depends on ≤ k of its n coordinates, i.e. there exist
coordinates i1 < · · · ik ∈ [n] and a function g : {−1, 1}k → {−1, 1} such that

f(x1, . . . , xn) = g(xi1 , . . . , xik).

6. The Tribes function is parametrized by its width w and its number of tribes s. It outputs −1 if
all members in a tribe agrees on voting for −1, and 1 otherwise. (However, it may not output
1 even if all members in a tribe votes for 1.) Specifically, Tribesw,s : {−1, 1}w·s → {−1, 1} is
defined as

Tribesw,s(x1,1, . . . , xs,w) :=
s∨

i=1

w∧
j=1

xi,j ,

where we use ∧s
i=1xi to denote ANDs(x) and ∨w

j=1xj to denote ORw(x). Note that Tribesw,s is

a read-once width w DNF formula with s terms1, where read-once means that every input
variable appears in the formula at most once.

Given a width w, we typically want to choose s = s(w) so that Tribesw,s is close to balanced,
i.e. Prx[Tribesw,s(x)] ≈ 1/2, and so we can take s ≈ 2w ln 2.

1Sometimes the Tribes function is defined as a CNF, i.e., ANDs composed with ORw on disjoint variables.

10

not a junta symmetric monotone unanimous odd

Maj YES YES YES YES YES

ANDn YES YES YES YES NO

ORn YES YES YES YES NO

dictator NO NO YES YES YES

k-junta NO NO NO NO NO

Tribes YES NO YES YES NO

Figure 1: Properties that are satisfied by the voting rules we considered.

3.1.2 Properties of voting schemes

Let us consider some desirable properties in a voting scheme.

1. f is not a junta if every coordinate i ∈ [n] matters. Specifically, for every i ∈ [n] we can
find an input x ∈ {−1, 1}n such that flipping its input bit changes the outcome of f , i.e.
f(x) ̸= f(x⊕i), where we use x⊕i to denote (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

2. f is symmetric if the identities of the voters do not matter. Specifically, for every permutation
π : [n] → [n], we have f(x) = f(xπ) := f(xπ(1), . . . , xπ(n)). One can verify that f only depends
on
∑n

i=1 xi, or the Hamming weight of x (after switching the value of the xi’s to {0, 1}).

3. f is monotone if switching a bit xi of x from −1 to 1 can change f(x) to 1. Specifically, if we
define the partial ordering on {−1, 1}n by x ≤ y if and only if xi ≤ yi for every i ∈ [n], then
x ≤ y implies f(x) ≤ f(y).

4. f is unanimous if f(1, . . . , 1) = 1 and f(−1, . . . ,−1) = −1.

5. f is odd if f(−x) = −f(x).

Figure 1 shows which properties each of the above examples satisfy. (Verify the May’s theorem,
which says that the majority function is the only function that is symmetric, monotone, unanimous,
and odd.) The Tribes function is monotone because the composition of monotone functions is again
monotone. We can see that the Tribes2,2 is not symmetric by considering the input x = (1,−1, 1,−1).
However, it satisfies a weaker notion of symmetry called transitive-symmetric. Intuitively, a function
is transitive-symmetric if every two coordinates i, j ∈ [n] are equivalent.

Definition 3.1. f is transitive-symmetric if for every two coordinates i, j ∈ [n], there exists a
permutation π : [n] → [n] with π(i) = j such that f(xπ) = f(x) for every x ∈ {−1, 1}n.

Proposition 3.2. Tribesw,s is transitive-symmetric for every integer w and s.

Proof. At a high level, this follows from AND and OR being symmetric. Given two coordinates
(i1, j1), (i2, j2) ∈ [s] × [w], we construct a permutation π : [s] × [w] → [s] × [w] that permutes the
tribes and the members in every tribes separately. Specifically, consider a permutation π1 : [s] → [s]
that swaps the two tribe indices i1 and i2, and a permutation π2 : [w] → [w] that swaps j1 and j2 (in
all tribes). We define π(i, j) := (π1(i), π2(j)). By definition, we have π((i1, j1)) = (π(i1), π(j1)) =
(i2, j2). Now, for every x ∈ {−1, 1}n,

f(xπ) =
w∨
i=1

s∧
j=1

xπ(i),π(j) =
w∨
i=1

s∧
j=1

xπ(i),j =
w∨
i=1

s∧
j=1

xi,j = f(x),

11

where the second equality follows from the symmetry of AND and the third follows from the
symmetry of OR.

12

CS229BR: Analysis of Boolean Functions Lecture 4
Harvard University Sept 15 2022

4.1 Influence

We will study the influence of a function f , one of the most fundamental concept in the analysis of
Boolean functions.

Definition 4.1. A coordinate i ∈ [n] is pivotal on x if f(x) ̸= f(x⊕i).

The i-th influence of a Boolean function is the probability that the i-th voter can change the
outcome when the others vote uniformly, that is, the probability of the i-th coordinate being pivotal
on a uniform random x ∼ {−1, 1}n.

Definition 4.2 (i-th influence). The i-th influence of f , denoted by Infi[f], is defined as

Infi[f] = Pr
x∼{−1,1}n

[
f(x⊕i) ̸= f(x)

]
.

Every f : {−1, 1}n → {−1, 1} induces a 2-coloring on the vertices in the Boolean hypercube
{−1, 1}n by coloring each x with f(x). We can partition the edges in the hypercube {−1, 1}n into
n subsets E1, . . . , En of equal size, where the edges in Ei := {(x, x⊕i) : x ∈ {−1, 1}n} are in the i-th
direction of the hypercube. Each Ei divides {−1, 1}n into two equal halves {x ∈ {−1, 1}n : xi = −1}
and {x ∈ {−1, 1}n : xi = 1}. We call an edge (x, x⊕i) pivotal if its two endpoints are colored
differently, i.e., f(x⊕i) ̸= f(x). (Consider coloring {−1, 1}3 with Maj3.)

Fact 4.3. Infi[f] =
pivotal edges in the i-th direction

edges in the i-th direction = # pivotal edges in the i-th direction
2n−1 .

Some examples. We now look at the i-th influence of some Boolean functions.

1. The two constant functions f(x) ≡ −1 and f(x) ≡ 1 have Infi[f] = 0 for every i ∈ [n].

2. The dictators satisfy Infj [χ{i}] = 1 if i = j and 0 otherwise.

3. The majority of 3 bits Maj3 satisfies Inf1[f] = Inf2[f] = Inf3[f] = 1/2.

4. For the majority of n bits, the i-th coordinate is pivotal if the rest of the n− 1 bits contain
equal number of 1s and −1s. So

Infi[Majn] = Pr
[
Bin(n− 1, 1/2) = (n− 1)/2

]
= 2−(n−1)

(
n− 1

(n− 1)/2

)
= Θ(1/

√
n).

Is there a function whose individual influences are smaller than Θ(1/
√
n)? If turns out the

Tribes function is one such example.

Fact 4.4. Inf(1,1)[Tribesw,2w ln 2] = Θ((log n)/n), where n = w · 2w ln 2 is the number of input bits.

Proof. The coordinate (1, 1) is pivotal when the AND of all but the first tribes output “False = -1”,
and all the rest of the bits in the first tribe are “False = -1”. Thus,

Inf(1,1)[Tribesw,2w ln 2] = (1− 2−w)s−1 · 2−(w−1) ≈ 2−w = Θ((log n)/n).

13

What about the influence of the other coordinates? It turns out every coordinate i ∈ [n]
has the same i-th influence as long as f is transitive-symmetric. This captures the intuition of
transitive-symmetric that every i, j ∈ [n] are “equivalent”.

Proposition 4.5. If f is transitive-symmetric, then Infi[f] = Infj [f] for every i, j ∈ [n].

Proof. Given i ̸= j, let π : [n] → [n] be the permutation with π(i) = j and that f(xπ) = f(x) for
every x ∈ {−1, 1}n. Then

Infi[f] = Pr
x
[f(x) ̸= f(x⊕i)] = Pr

x

[
f(xπ) ̸= f((xπ)⊕π(i))

]
= Pr

x

[
f(xπ) ̸= f((xπ)⊕j)

]
= Pr

x

[
f(x) ̸= f((x)⊕j)

]
= Infj [f],

where the second last equality is because x and xπ are identically distributed.

Therefore, we have Inf(i,j)[Tribesw, 2
w ln 2] = Θ((log n)/n) for every (i, j) ∈ [s] × [w]. The

following theorem by Kahn, Kalai, and Linial says that this is actually best possible.

Theorem 4.6 (KKL theorem). maxi∈[n] Infi[f] ≥ Θ
(
logn
n

)
·Var[f] for every f : {−1, 1}n → {−1, 1}.

We will prove Theorem 4.6 later when we cover Hypercontractivity.

4.1.1 Formula for Influences

We now express the i-th influence of f in terms of the Fourier coefficients of f . We first introduce
the derivative operator Dif . Then we will relate Infi[f] to Dif , and relate Dif to the coefficients
f̂(S).

For b ∈ {−1, 1}, let xi 7→b := (x1, . . . , xi−1, b, xi+1, . . . , xn).

Definition 4.7 (Derivative Operator). The i-th derivative operator Di on f : {−1, 1}n → R is the
function Dif : {−1, 1}n → R defined by

Dif(x) =
f(xi 7→1)− f(xi 7→−1)

2
= E

yi∼{−1,1}
[f(x1, . . . , xi−1,yi, xi+1, . . . , xn)yi].

Remark 4.8. Observe that actually Dif does not depend on xi and is only a function of (x1, . . . ,
xi−1, xi+1, . . . , xn).

In particular, for f : {−1, 1}n → {−1, 1} we have

Dif(x) =

{
±1 if f(xi 7→1) ̸= f(xi 7→−1)

0 if f(xi 7→1) = f(xi 7→−1).
(5)

Therefore we have the following proposition.

Proposition 4.9. For f : {−1, 1}n → {−1, 1}, we have Infi[f] = Ex[|Dif(x)|] = Ex[(Dif(x))
2].

We will use Ex[(Dif(x))
2] as our definition of Infi[f] for real-valued functions f .

Definition 4.10 (i-influence of real-valued functions). The i-th influence of f : {−1, 1}n → R,
denoted Infi[f], is defined as Infi[f] := Ex[(Dif(x))

2].

14

We now look at the Fourier expansion Dif : {−1, 1}n → R.

Proposition 4.11. For f : {−1, 1}n → R, we have Dif(x) =
∑

S∋i f̂(S)x
S\{i}.

Proof. First show that Di is a linear operator, that is, we have Di(f + g) = Di(f) +Di(g) for any
f, g, and Di(αf) = αDif for any α ∈ R. Then observe that

Di(x
S) =

{
xS\{i} if i ∈ S

0 if i ̸∈ S.

We can see that Dif operates the same as the partial derivative operator ∂f
∂xi

on the Fourier

expansion of f . Now we are ready to express Infi[f] in terms of its Fourier coefficients f̂(S).

Theorem 4.12. Infi[f] :=
∑

S∋i f̂(S)
2.

Proof. We can expand Infi[f] = Ex[Dif(x)
2] by replacing Dif with its Fourier expansion, then as

before use the orthonormality of the parity functions.
Alternatively, we can apply Parseval’s identity to Dif and relate D̂if(T) to f̂(S). Since the

Fourier expansion of any g : {−1, 1}n → R is unique, from Proposition 4.11 we see that2

D̂if(S \ {i}) =

{
f̂(S) if S ∋ i

0 otherwise.

So we have
∑

T⊆[n] D̂if(T)
2 =

∑
S∋i f̂(S)

2.

Note that if f is monotone, then from the definition of Dif (Equation (5)) we see that Dif(x) ∈
{1, 0} and hence we have the following simple expression for Infi[f].

Proposition 4.13. If f : {−1, 1}n → {−1, 1} is monotone, then Infi[f] = f̂({i}).

Proof. Infi[f] = Ex[Dif(x)] = Ex[Di(x)xi] = f̂({i}).

We can derive some new properties of Infi[f] from their Fourier coefficients.

Claim 4.14. If f : {−1, 1}n → {−1, 1} is monotone and transitive-symmetric, then Infi[f] ≤ 1/
√
n.

Proof. n · f̂({1})2 =
∑n

i=1 f̂({i})2 ≤ 1.

2In the lecture I mistakenly claimed that D̂if(S) = f̂(S). Thanks to Gabriel Wu for pointing out the mistake.

15

CS229BR: Analysis of Boolean Functions Lecture 5
Harvard University Sept 20 2022

5.1 Total Influence

We first define the total influence of a Boolean function, then we will give 3 different ways of
interpreting this notion, and a Fourier formula for it.

Definition 5.1 (Total influence). The total influence of f : {−1, 1}n → {−1, 1}, denoted by I[f], is
defined as

I[f] :=
n∑

i=1

Infi[f].

For example, we have I[Majn] = Θ(
√
n), I[Tribeslogn,Θ(n/ logn)] = Θ(log n), and I[χS] = |S|. We

now give 3 different ways of interpreting I[f].

5.1.1 Boundary of f

The first one arises from our graph interpretation of the individual influences Infi[f]. We have

I[f] =

n∑
i=1

Pr
x∼{−1,1}n

[f(x) ̸= f(x⊕i)]

=

n∑
i=1

pivotal edges (of f) in the i-th direction

2n−1

=
pivotal edges (of f)

2n−1
.

One can think of I[f] as the surface area of f , as it is (up to some scaling) counting the fraction of
edges that lie on the boundary of f−1{1}, i.e., edges with one endpoint in f−1{1} and the other
in f−1{−1}. (Note: this is not the only definition of surface area of a function f .) Om the other
hand, one can think of the variance Var[f] of f as the volume of f : if we let µ = Pr[f(x) = 1],
then Var[f] = 4µ(1 − µ) = Θ(µ) when µ ≤ 1/2 (if µ > 1/2, we can look at −f instead). In this
course, we will prove several isoperimetric inequalities that give lower bounds on the surface area of
f in terms of its volume.

5.1.2 Average sensitivity

An equivalent definition of I[f] is the average sensitivity of f . First we define the sensitivity of f at
a point x ∈ {−1, 1}, which counts how many pivotal coordinates i ∈ [n] in x, i.e flipping the i-th
bit of x changes the value of f(x). A graph interpretation of sensitivity would be the number of
neighbors of the vertex x that are colored (by f) differently from x itself.

Definition 5.2 (Sensitivity). The sensitivity of f at x, denoted by sensf (x), is defined as

sensf (x) :=
n∑

i=1

1
(
f(x) ̸= f(x⊕i)

)
.

16

The average sensitivity is simply the average of sensf (x) over a uniform random x ∈ {−1, 1}n,
that is,

E
x∼{−1,1}n

[sensf (x)] = E
x∼{−1,1}n

[n∑
i=1

1
(
f(x) ̸= f(x⊕i)

)]
=

n∑
i=1

E
x∼{−1,1}n

[n∑
i=1

1
(
f(x) ̸= f(x⊕i)

)]
= I[f].

5.1.3 Spectral sampling

Before giving the third interpretation of I[f] we have to give the Fourier formula of I[f]. Recall that
Infi[f] :=

∑
S∋i f̂(S)

2. Summing over all i ∈ [n] and swapping summations, we can express I[f] in
terms of the Fourier coefficients of f .

Proposition 5.3. I[f] =
∑

S⊆[n]|S|f̂(S)2.

Recall that for a Boolean function f : {−1, 1}n → {−1, 1} we have
∑

S⊂[n] f̂(S)
2 = 1. Since the

f̂(S)2’s are always non-negative, the square of the coefficients form a distribution on 2[n].

Definition 5.4 (Spectral sampling). The spectral sample for f : {−1, 1}n → {−1, 1}, denoted by
Sf , is the probability distribution on 2[n] defined by Pr[Sf = S] = f̂(S)2.

Given this definition, one can see that the I[f] is the expected size of a random subset drawn
according to Sf .

Proposition 5.5. I[f] = ES∼Sf [|S|].

It follows from Markov’s inequality that if the total influence I[f] is small, then most of the
Fourier mass of f lies in the low-degree part of its Fourier spectrum.

Proposition 5.6.
∑

S⊆[n]:|S|>ϵ f̂(S)
2 = PrS∼Sf [|S| > ϵ] ≤ I[f]/ϵ.

By comparing the Fourier formula of I[f] and Var[f], we immediately obtain our first isoperi-
metric inequality in this course.

Claim 5.7 (Poincaré’s inequality). I[f] ≥ Var[f].

5.2 Noise

We now introduce another natural concept in computer science that plays a crucial role in Boolean
function analysis. Later in the course we will see how this concept leads to various important results
in theoretical computer science. We first define our model of noise.

Definition 5.8. Given x ∼ {−1, 1}n and ρ ∈ [−1, 1], define the noisy random string y ∼ Nρ(x) by
setting each yi independently to

yi :=

{
uniform with probability 1− ρ

sgn(ρ) · xi with probability ρ

=

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2 .

17

We say y ∼ Nρ(x) is ρ-correlated with x. Observe that when ρ = 0, we have that y ∼ Nρ(x)
is the uniform random string, which is uncorrelated with x, and when |ρ| = 1, we have that
y ∈ {x,−x}, which is completely correlated with x.

One may think of the parameter ρ as the (ρ = r)etention probability of the noise. Equivalently,
one can think of y ∼ BSCδ(x) for δ = 1−ρ

2 ∈ [0, 1], where BSCδ(x) is the binary symmetric channel
that independently flips each bit xi to −xi with probability δ.

Definition 5.9. We say (x,y) is a ρ-correlated pair if

1. x and y are both uniform in {−1, 1}n (but they are not necessarily independent), and

2. E[xiyi] = ρ for every i ∈ [n].

Equivalently, a ρ-correlated pair can be sampled by drawing x ∼ {−1, 1}n uniformly at random,
and y ∼ Nρ(x).

We can now introduce the important concept of noise stability.

Definition 5.10 (Noise Stability). For f : {−1, 1}n → R, and ρ ∈ [−1, 1], the noise stability of f at
ρ, denoted by Stabρ[f], is defined as

Stabρ[f] = E
x∼{−1,1}n,y∼Nρ(x)

[f(x)f(y)].

Note that for f : {−1, 1}n → {−1, 1} we have Stabρ[f] = 2Pr(x,y) ρ-correlatedPr[f(x) = f(y)]−1,
and for f : {−1, 1}n → {0, 1}, we have Stabρ[f] = Pr(x,y) ρ-correlated[f(x) = 1 ∧ f(y) = 1]. Viewing
f as an indicator of a subset A, we can see that the noise stability of f measures the probability of
a uniform random x lying in A and remains in A under some perturbation of noise.

Example 5.11. We have Stabρ[χS] = ρ|S|. One way to see this is that for every x, as long as some
bit of y in S is “rerandomized” to uniform, then the expectation is 0. Otherwise, we have y = x.

Example 5.12. The stability of Majority satisfies limn→∞ Stabρ(Majn) = 2
π arcsin(ρ), which is

roughly 2
πρ when ρ is close to 0, and 1−O(

√
1− ρ) when ρ is close to 1. (We will not prove it in

this course.)

It is often useful to look at the “opposite” of noise stability, i.e., how sensitive f is under
perturbing a uniform x with noise. Recall that y ∼ BSCδ(x) = N1−2δ(x).

Definition 5.13 (Noise Sensitivity). The noise sensitivity of f : {−1, 1}n → {−1, 1}, denoted by
NSδ[f], is defined as

NSδ[f] = Pr
x∼{−1,1}n,y∼BSCδ(x)

[f(x) ̸= f(y)] =
1

2

(
1− Stab1−2δ[f]

)
.

5.2.1 Noise operator

We now derive the Fourier formula for Stabρ[f], we first look at the behavior of f when a fixed
input x is perturbed by noise. This motivates the definition of the noise operator.

Definition 5.14 (Noise Operator Tρ). The noise operator Tρ on f : {−1, 1}n → R, is the function
Tρf defined by

Tρf(x) = E
y∼Nρ(x)

[f(y)].

18

The noise operator dampens each coefficient of f by a factor ρ|S|:

Proposition 5.15. Tρ(x) =
∑

S⊆[n] f̂(S)ρ
|S|χS(x).

Proof. Show that TρχS = ρ|S|χS , and apply linearity of expectation.

Now we can express Stabρ[f] in terms of f̂(S).

Proposition 5.16. Stabρ[f] = Ex∼{−1,1}n [f(x)Tρ(x)] =
∑

S⊆[n] ρ
|S|f̂(S)2.

Clearly, the most noise stable functions are the two constant functions f(x) ≡ 1 and f(x) ≡ −1.
What if we require the function to be balanced? We now show that the most noise stable balanced
functions are dictators and anti-dictators (i.e. −χ{i} for i ∈ [n]).

Claim 5.17. Let ρ ∈ (0, 1). Then Stabρ[f] ≤ ρ for every f with E[f(x)] = 0.

Proof. Observe that ρ|S| is non-increasing in |S|.

From the proof of Claim 5.17, we see that to attain Stabρ[f] = ρ the function must be a function
of (real) degree 1. We have the following simple claim.

Claim 5.18. If f : {−1, 1} → {−1, 1} has degree 1, then f is a constant, dictator, or anti-dictator.

Proof. Since f has degree 1, we can write f(x) as f̂(∅) +
∑n

i=1 f̂({i})xi. By Parseval’s identity,

f̂(∅)2 +
∑n

i=1 f̂({i})2 = 1. In Homework 1, we showed that if deg(f) ≤ 1, f̂(S) must be an integer.
So only one coefficient can be nonzero and it must have magnitude 1.

19

CS229BR: Analysis of Boolean Functions Lecture 6
Harvard University Sept 22 2022

6.1 Low-degree functions

Recall that the (real) degree of a function f : {−1, 1}n → R is defined as

deg(f) = max{|S| : f̂(S) ̸= 0}.

We first study Boolean functions of low degree, and later relax our notion of low degree and
study Boolean functions that are “close” to being low degree.

An example of degree-k functions are the class of k-juntas: as every k-junta can be written as a
function on k bits, every k-junta has degree at most k. Another class of low-degree functions is the
class of low-depth decision trees.

Definition 6.1 (Decision Tree). A decision tree T is a rooted binary tree, in which the nodes are
labeled by a bit xi : i ∈ [n], the edges are labeled by {−1, 1}, and the leaves are labeled by R. It
computes a function f : {−1, 1}n → R as follows: Given an input x ∈ {−1, 1}n, it traverses from its
root to a leaf by repeatedly querying the bit xi labeled by the current node, and then moving to one
of its two children by taking the edge labeled by xi. The output of T on x is the value of the leaf.

Example 6.2. Draw a decision tree that computes the function f(x1, x2, x3) that returns −1 if
x1 ≤ x2 ≤ x3 or x1 ≥ x2 ≥ x3, and 0 otherwise.

We use depth(T) to denote the length of the longest root-to-leaf path in T , and size(T) to denote
the number of nodes in T .

The decision tree depth of f is the smallest depth of a decision tree computing f . Likewise, the
decision tree size of f is the smallest size of a decision tree computing f .

Claim 6.3. If f has decision tree depth k, then deg(f) ≤ k.

Proof. We use the interpolation idea in the first lecture: consider the indicator function for each
root-to-leaf path, which can be written as a polynomial of degree at most k.

We have seen that a k-junta must have degree at most k. We now show the converse that a
degree-k function must be a k · 2k-junta.

Theorem 6.4 (Nisan and Szegedy). If f : {−1, 1}n → {−1, 1} has degree at most k, then f is a
k · 2k−1-junta.

Note that this theorem is non-trivial only when k < log n, because every f is an n-junta.

Proof. We will show that

1. I[f] ≤ deg(f), and

2. For every i ∈ [n], either Infi[f] ≥ 2−k or Infi[f] = 0.

From this it is immediate that f has at most k · 2k nonzero influential coordinates, and thus is a
(k · 2k)-junta. Item 1 follows immediately from the spectral sampling interpretation of I[f]. To
prove Item 2, we express Infi[f] in terms of its derivative Dif . Recall that Dif(x) ∈ {−1, 0, 1}. So
Infi[f] = Prx∼{−1,1}n [Di(x) ̸= 0]. Note that Dif is a degree k − 1 polynomial. We now prove the
following general claim about polynomials.

20

Claim 6.5. Let p : {−1, 1}n → R be a polynomial of degree at most d. Then either p ≡ 0 or
Prx∼{−1,1}n [p(x) ̸= 0] ≥ 2−d.

Proof. We apply induction on n. Write f as

p(x) =

(
1 + x1

2

)
f(1, x2, . . . , xn) +

(
1− x1

2

)
f(−1, x2, . . . , xn).

For b ∈ {−1, 1}, let gb : {−1, 1}n → {−1, 1} denote f(b, x2, . . . , xn).
If g1 ≡ g−1 ≡ 0, then there is nothing to prove. If neither of them is identically zero, then by

induction

Pr
x∼{−1,1}n

[p(x) ̸= 0)] =
1

2
Pr

y∼{−1,1}n−1
[g1(y) ̸= 0] +

1

2
Pr

y∼{−1,1}n−1
[g−1(y) ̸= 0] ≥ 2−d.

For the remaining case, assume g1 ≡ 0 but g−1 is not. Then we have

f(x) =
1− x1

2
g−1(x2, . . . , xn).

So g−1 must have degree d− 1, and Prx∼{−1,1}n [f(x) ̸= 0] = 1
2 Pry∼{−1,1}n−1 [g(y) ̸= 0] ≥ 2−d.

6.2 Fourier concentration

We now relax the notion of low degree through its Fourier spectrum.

Definition 6.6 (Low-degree Fourier concentration). A function f : {−1, 1}n → R is ϵ-concentrated
on degree at most k if

W>k[f] :=
∑
|S|>k

f̂(S)2 = Pr
S∼Sf

[
|S| > k

]
≤ ϵ.

Note that if f is 0-concentrated on degree ≤ k, then deg(f) ≤ k. So this is indeed a generalization
of having degree ≤ k. Let us compare this notion of closeness with one we saw in linearity testing.

6.2.1 Measures of closeness

Recall in linearity testing, we say that two functions f, g : {−1, 1}n → {−1, 1} are ϵ-close if

distL0(f, g) := Pr
x∼{−1,1}n

[f(x) ̸= g(x)] ≤ ϵ.

We sometimes call this L0-distance because this is equal to Ex[(f(x)− g(x))0] (where we define
00 = 0). Replacing L0 with L2, we have the definition of L2-distance.

Definition 6.7 (L2 distance). Two functions f, g : {−1, 1}n → R are ϵ-close in L2-distance if

distL2(f, g) = E
x∼{−1,1}n

[
(f(x)− g(x))2

]
≤ ϵ.

The L2-distance is the “right” metric to use in Fourier analysis because of we can express the
L2 distance between f and g in terms of their Fourier coefficients, thanks to Parseval’s identity.

Fact 6.8. distL2(f, g) =
∑

S⊆[n](f̂(S)− ĝ(S))2.

21

We now compare L0-distance with L2-distance and see if closeness in one notion implies closeness
in the other. It turns out they are the same up to a factor of 4.

Proposition 6.9. For every f, g : {−1, 1}n → {−1, 1}, we have distL0(f, g) = 4distL2(f, g).

Proof. Since f(x)− g(x) ∈ {−2, 0, 2},

distL0(f, g) = Pr
x
[f(x) ̸= g(x)] = 4E

x
[(f(x)− g(x))2] = 4 · distL2(f, g).

We now compare ϵ-concentration to L2-closeness. We will show that f : {−1, 1}n → R is ϵ-
concentrated on degree ≤ k if and only if f is ϵ-close to some function g : {−1, 1}n → R of degree at
most k in L2-distance.

Proposition 6.10. f : {−1, 1}n → R is ϵ-concentrated on degree ≤ k if and only if Ex[(f(x) −
g(x))2] ≤ ϵ for some g : {−1, 1}n → R.

Proof. Suppose f is ϵ-concentrated on degree≤ k. Define g : {−1, 1}n → R by g(x) :=
∑

|S|≤k f̂(S)χS(x).
Then

E
x
[(f(x)− g(x))2] =

∑
S⊆[n]

(f̂(S)− ĝ(S))2 =
∑
|S|>k

f̂(S)2 ≤ ϵ.

Suppose f is ϵ-close to some function g of degree at most k. Then∑
|S|>k

f̂(S)2 =
∑
|S|>k

(f̂(S)− ĝ(S))2 ≤
∑
S⊆[n]

(f̂(S)− ĝ(S))2 ≤ ϵ.

From the proof you can see that g :=
∑

|S|≤k f̂(S)χS is the unique degree-k function closest to
f in L2 distance. What if we further require g to be Boolean? We have the following theorem by
Kindler and Safra.

Theorem 6.11 (Kindler and Safra). If f : {−1, 1}n → {−1, 1} is ϵ-concentrated on degree ≤ k,
where ϵ ≤ ϵk for some ϵk > 0, then E[(f(x)− g(x))2] ≤ 2ϵ for some Boolean function g : {−1, 1}n →
{−1, 1}.

Let us now look at some functions with low-degree spectral concentration. Recall in Proposi-
tion 5.6 we showed that functions with total influence I[f] are ϵ-concentrated on degree at most
I[f]/ϵ. The proof idea is to look at the spectral sampling interpretation of I[f]. It turns out we can
apply the same idea to the noise stability of f .

Proposition 6.12. Every f : {−1, 1}n → {−1, 1} is 2(1− Stabρ[f])-concentrated on degree at most
1/(1− ρ).

Note that Proposition 6.12 is interesting when the retention rate ρ := 1− 1/ϵ is close to 1 and
the Stabρ[f] is close to 1, so let’s state it in terms of noise sensitivity.

Proposition 6.13. Every f : {−1, 1}n → {−1, 1} is (4NSδ[f])-concentrated on degree at most
1/(2δ).

Proof. Recall that NSδ[f] =
1
2(1− Stab1−2δ[f]).

We now prove Proposition 6.12.

22

Proof. Observe that

Stabρ[f] =
∑
S⊆[n]

ρ|S|f̂(S)2 = E
S∼Sf

[ρ|S|].

Since 1 = ES∼Sf [1], we have

1− Stabρ[f] = E
S∼Sf

[1− ρ|S|]

≥ E
S∼Sf

[(1− ρ|S|) · 1(|S| > t)]

≥ E
S∼Sf

[(1− ρt) · 1(|S| > t)]

= (1− ρt) Pr
S∼Sf

[|S| > t].

Setting t = 1/(1− ρ), we have 1− ρt ≥ 1− e−1 ≥ 1/2.

We saw in Theorem 6.4 that every degree-k Boolean function must be a (k · 2k)-junta. Later in
the course, we will later see a robust analogue of this theorem by Friedgut. (Its proof is also closely
related to the proof of Theorem 6.11). Recall that we always have I[f] ≤ deg(f).

Theorem 6.14 (Friedgut’s junta theorem). Every f : {−1, 1}n → {−1, 1} is ϵ-close to a 2O(I[f]/ϵ)-
junta.

23

CS229BR: Analysis of Boolean Functions Lecture 7
Harvard University Sept 27 2022

7.1 Learning low-degree functions

We will show how to learn functions that are close to low-degree. The model we will be using is the
PAC (Probably Approximately Correct) learning model introduced by Valiant in 1984.

The setup is as follows. Fix a concept class C ⊆ {f : {−1, 1}n → {−1, 1}}. The learning
algorithm is given “restricted access” to an unknown function f ∈ C. We will focus on two access
models:

1. Random examples: The algorithm is given random examples of the form (x(1), f(x(1))),
. . . , (x(T), f(x(T))), where the x(t)’s are uniform.

2. Query access: The algorithm makes queries on the points x(1), . . . , x(T) of its choice, and
receives the values f(x(1)), . . . , f(x(T)) in return.

Note that a learning algorithm in the query access model can simulate an algorithm in the
random examples model by choosing the samples uniformly at random.

Realizable vs. Agnostic learning. Realizable means that the value of f(xt) is always correct;
Agnostic means that the algorithm may not receive the correct value of f(x(t)) sometimes.

In both the random examples and query access settings, given (x(1), f(x(1))), . . . , (x(T), f(x(T))),
the learning algorithm outputs a function h : {−1, 1}n → {−1, 1} that is close to f . In proper
learning, we requires h ∈ C, whereas in improper learning, h can be an arbitrary Boolean function.

We will only talk about realizable and improper learning.

Definition 7.1. A learning algorithm learns a concept class C with accuracy ϵ and T samples/queries
if for every f ∈ C, given (x(1), f(x(1))), . . . , (x(T), f(x(T))) it outputs an h : {−1, 1}n → {−1, 1}
such that

Pr
h
[f and h are ϵ-close] ≥ 9/10.

where the randomness of h is over the randomness of the random examples (if we are in the random
examples model), and the internal randomness of the algorithm.

Theorem 7.2 (Linial–Nisan–Mansour). Let C be the class of functions f : {−1, 1}n → {−1, 1} that
are ϵ-concentrated on degree at most k. There is a learning algorithm that learns C with accuracy ϵ
in time poly(nk, 1/ϵ).

Note that in expectation all the 2n inputs will appear in O(n · 2n) random examples, and so
every Boolean function can be learned using this many examples.

7.1.1 LMN algorithm

We now prove Theorem 7.2. The algorithm is based on two ideas. The first one is to estimate all
the low-degree Fourier coefficients using random examples. The second one is to come up with a
Boolean function that is close to f using these estimates.

24

Algorithm 1: Linial–Mansour–Nisan Algorithm

Input: Random examples access to an unknown f : {−1, 1}n → {−1, 1}.
Output: A Boolean function h : {−1, 1}n → {−1, 1}

1 Estimate f̂(S) for every |S| ≤ k good enough accuracy

2 Let ĝ(S) be our estimates of f̂(S)
3 Output h(x) := sgn

(∑
|S|≤k ĝ(S)χS(x)

)
Estimating f̂(S). Recall that f̂(S) = Ex[f(x)χS(x)]. We will approximate this average by
empirical estimation. Specifically, for each S : |S| ≤ k, we draw some T random samples
(x(t), f(x(t))) : t ∈ [T] and estimate f̂(S) with

ĝ(S) :=
1

T

∑
t∈[T]

f(x(t))χS(x
(t)).

By the Chernoff bound, we have

Pr
[∣∣ĝ(S)− f̂(S)

∣∣ > δ
]
≤ e−δ2T/8.

Since we will be summing the square of the differences over all the low-degree coefficients, we set δ

to be
√

ϵ/
(
n
k

)
, and we also need to take an union bound over the

(
n
k

)
≤ nk coefficients. So we pick

T = 100
(
n
k

)
(k log n)/ϵ, and we have

Pr
[(
ĝ(S)− f̂(S)

)2 ≤ ϵ(
n
k

) for every |S| ≤ k
]
≤ 1/10.

It follows from our choice of T that the algorithm runs in time poly(nk, 1/ϵ).

Showing h is close to f . Here the key observation is that 1(f(x) ̸= h(x)) ≤ (f(x) − g(x))2,
because f(x) ∈ {−1, 1}n and g(x) has the opposite sign to f(x). The rest is just a simple calculation:

Pr
x

[
f(x) ̸= h(x)

]
≤ E

x

[
(f(x)− g(x))2

]
=
∑
S⊆[n]

(f̂(S)− ĝ(S))2

=
∑

S:|S|≤k

(f̂(S)− ĝ(S))2 +
∑

S:|S|>k

f̂(S)2

≤ 2ϵ

This completes the proof of Theorem 7.2. It immediately implies learning algorithms for the following
concept classes.

Corollary 7.3. The following concept classes can be learned using random samples.

1. C := {f : deg(f) ≤ t} can be learned in time poly(nk, 1/ϵ).

2. C := {f : I[f] ≤ t} can be learned in time poly(nt/ϵ).

3. C := {f : NSδ[f] ≤ ϵ} can be learned in time poly(n1/δ, 1/ϵ).

25

4. C := {f : f is monotone} can be learned in time poly(nO(
√
n/ϵ)).

Proof. Items 2 and 3 follow from ϵ-concentration of low total influence and low noise sensitivity
functions (Propositions 5.6 and 6.13). Item 4 follows from Homework 1 Q8, because for monotone
functions we have Infi[f] = f̂({i}).

We can also consider spectral concentration on arbitrary subsets of Fourier coefficients, not just
the low-degree ones.

Definition 7.4. f : {−1, 1}n → {−1, 1} is ϵ-concentrated on a set of coefficients F ⊆ 2[n] if∑
S ̸∈F f̂(S)2 ≤ ϵ.

It is straightforward to see the LMN algorithm can also learn functions that are ϵ-concentrated
on a “small” subset F of coefficients.

Corollary 7.5. Let C be the class of functions f : {−1, 1}n → {−1, 1} that are ϵ-concentrated on
F ⊆ 2[n]. There is a learning algorithm that learns C with accuracy ϵ in time poly(|F|, 1/ϵ).

26

CS229BR: Analysis of Boolean Functions Lecture 8
Harvard University Sept 29 2022

8.1 Goldreich–Levin Theorem

Corollary 7.5 assumes the algorithm knows the subset of coefficients f is concentrated on. We now
show how to identify these “heavy” coefficients efficiently.

Recall in Homework 1 Q6, we showed that given query access to an unknown function f : Fn
2 → F2

that is 1/8-close to linear, we can learn the linear function f is ϵ-close to in time O(n log n).

We now consider the what happens if f is (1/2 − ϵ)-close to linear. The first thing to notice
is that there may be multiple linear functions that are (1/2− ϵ)-close to f ; so we will output all
the linear functions that are close to f . We will identify each linear function

∑
i∈S xi by the subset

S ⊆ [n]. Also, we will instead identify all the linear functions that are correlated to f . So new task
is the following.

Given query access an unknown f : {−1, 1}n → {−1, 1}, output the subsets S such that
|Ex[f(x)χS(x)]| = |f̂(S)| ≥ ϵ.

We will prove the following theorem by Goldreich and Levin.

Theorem 8.1 (Goldreich–Levin Theorem). Given query access to an unknown f : {−1, 1}n →
{−1, 1} and a threshold parameter τ ∈ (0, 1), there is a poly(n, 1/τ)-time algorithm that with
probability at least 9/10 outputs a list L = {S1, . . . , Sℓ} ⊆ 2[n] such that

1. (Completeness) If |f̂(S)| > τ then S ∈ L.

2. (Soundness) If S ∈ L then |f(S)|2 ≥ τ/2.

Note that by Parseval’s identity, the list size ℓ is bounded above by 4/τ2.

The motivation of Theorem 8.1 comes from cryptography, and is related to hardness amplification
and list-decoding. The original proof of Theorem 8.1 does not use Fourier analysis, but is also quite
elegant. Here we present a Fourier-based algorithmic proof given by Kushilevitz and Mansour.

8.1.1 Kushilevitz–Mansour algorithm

High-level idea. As f̂(S)2 ≥ 0, if there is a subset S ⊆ 2[n] of coefficients so that its weight∑
S∈S f̂(S)2 is less than τ , then we know none of the coefficients in S belongs to our list. Otherwise,

we can divide the set S into two halves and recur. We now describe the algorithm in detail.

Algorithm 2: Kushilevitz–Mansour Algorithm

Input: Query access to an unknown f : {−1, 1}n → {−1, 1}.
Output: A list L = {S1, . . . , Sℓ} ∈ 2[n]

1 KM(γ, i):

2 Compute Rγ :=
∑

β∈{0,1}n−i f̂(γ ◦ β)2

3 if Rγ < γ2/2 then Stop
4 if i = n then Output γ ∈ {0, 1}n
5 KM(γ ◦ 0, i+ 1)
6 KM(γ ◦ 1, i+ 1)
7 Run KM(ϵ, 0)

27

The depth of the recursion tree of the algorithm is at most n, and at each level of the tree we
only recur into at most 4/τ2 of the nodes. So the total number of calls to line 2 is at most O(1/τ2).

Just like in the LMN algorithm, we do not compute
∑

β∈{0,1}n−i f̂(γ ◦ β)2 exactly, but rather
estimate this sum by expressing it as the expectation of some Boolean function.

Restrictions. Since we are estimating a sum of square of the coefficients, if there were a function
fγ such that

fγ(y) :=
∑

β∈{0,1}n−i

f̂(γ ◦ β)χβ(y),

then by Parsevel’s we have Ey[fγ(y)
2] = Rγ , and we can estimate the sum by empirical estimation.

To identify such function, let us divide the n-bit input into a prefix x ∈ {−1, 1}i and a suffix
y ∈ {−1, 1}n−i. We can write the Fourier expansion of f as

f(x, y) =
∑

α∈{0,1}i

∑
β∈{0,1}n−i

f̂(α ◦ β)χα(x)χβ(y).

Now suppose γ = 0⃗. Then we would like apply some operation to f so that the terms corresponding
to α ̸= 0 in the above sum vanish. Because each term contains a factor of χα(x), we can simply
average over the prefix x to achieve this goal, that is,

E
x
[f(x, y)] =

∑
β∈{0,1}n−i

f̂(0i ◦ β)χβ(y).

For general γ ∈ {0, 1}n, as in Homework 1 Q2 we can apply a “shift” by multiplying χγ(x). Therefore,
we define fγ as

fγ(y) := E
x
[f(x, y)χγ(x)] =

∑
β∈{0,1}n−i

f̂(γ ◦ β)χβ(y).

So to estimate Rγ , it suffices to estimate

E
y

[
E
x,x′

[f(x,y)f(x′,y)χγ(x+ x′)]
]
.

As before, we draw T independent tuples {(x(t),x′(t),y(t))}t∈[T], and compute the average of
f(x,y)f(x′,y)χγ(x+ x′) ∈ {−1, 1}. We will ensure each of our O(n/τ2) coefficients is within τ2/4
accuracy by taking T = O(log(n)/τ4). The correctness then follows from the usual Chernoff bound
and union bound argument. The total running time of the algorithm is n log n · poly(1/τ). This
finishes the proof of Theorem 8.1.

We can now combine the two algorithms we just learned to learn the class of low-degree Boolean
functions.

Corollary 8.2. Given query access to an unknown Boolean function f of degree at most k, f can
be recovered exactly using 2O(k) samples.

Proof. In Homework 1 Q4, we know that f contains at most 22k coefficients and each of them is an
integer multiple of 2−k. We can use Kushilevitz–Mansour algorithm to identify the set of non-empty
coefficients, then use LMN to estimate each non-empty coefficient within an accuracy of 2−k/100,
and round our estimates to the nearest integer multiple of 2−k.

So far we have talked about learning Boolean functions f : {−1, 1}n → {−1, 1}. Here we record
a recent result by Eskenazis and Ivanisvili on learning low-degree bounded real-valued functions
f : {−1, 1}n → [−1, 1].

28

Theorem 8.3. Every f : {−1, 1}n → [−1, 1] of degree at most k can be learned with accuracy 0.001

using log n · 2Õ(d3/2) random samples.

8.2 DNFs

We now look at the class of DNF formulas, a basic computational model that generalizes the class of
decision trees. Unlike small-depth decision trees, a DNF formula can have degree as large as n, but
we will show that its Fourier mass is concentrated on the low degree, and therefore is easy to learn.

Definition 8.4. A DNF (resp. CNF) formula over variables x1, . . . , xn is an OR of AND (resp.
AND of OR) of literals, where each literal is either xi or xi for some i ∈ [n]. The width of a DNF
(resp. CNF) is the maximum number of literals appearing in each OR (also called a term) (resp.
AND (also called a clause)). The size of a DNF (resp. CNF) is the number of terms (resp. clauses)
in it.

Let us recall the following fact.

Fact 8.5. If f is computable by a DNF of size s and width w, then its negation f can be computed
by a CNF of size s and width w.

Proof. De Morgan’s law.

Since f and f have the same Fourier spectrum up to negation, in Fourier analysis we can focus
on DNF, which is what we will do when we look at their Fourier spectrum. DNFs and CNFs are
generalization of the class of decision trees in the following sense.

Fact 8.6. If f : {0, 1}n → {0, 1} is computable by a decision tree of size s and depth k, then f is
computable by a DNF (and CNF) of size s and width k.

Proof. To convert a decision tree to a DNF, take the OR over each computation path that leads to
a leaf value 1, observe that the indicator of each path is an AND. To convert the decision tree into
a CNF, first convert negation of the decision tree to a DNF, then negate the DNF.

Example 8.7. The function f : {0, 1}3 → {0, 1} defined by f(x1, x2, x3) = 1((x1 ≤ x2 ≤ x3)∨(x1 ≥
x2 ≥ x3)) has a decision tree of size 6 and depth 3. It has a degree-3 polynomial representation

f(x1, x2, x3) := 1 · (1− x1)(1− x2)

+ 0 · (1− x1)x2(1− x3)

+ 1 · (1− x1)x2x3

+ 1 · x1(1− x2)(1− x3)

+ 0 · x1(1− x2)x3

+ 1 · x1x2.

It can be written as the following DNF of size 4 and width 3

f(x1, x2, x3) := x1x2 + 1 · x1x2x3 + x1x2x3 + x1x2,

and the following CNF of size 2 and width 3

f(x1, x2, x3) := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Note that this conversion does not necessary give the DNF of the smallest width. Indeed, one can
verify x1x2 ∧ x2x3 ∧ x1x3 is another DNF computing f .

As a result we have the following corollary.

Corollary 8.8. Every f : {−1, 1}n → {−1, 1} has a width-n DNF (and CNF) of size at most 2n.

29

8.2.1 Total influence of DNF

By considering the ANDn function, we can see that a DNF can have degree as large as n. We will
show that every DNF is ϵ-concentrated on its low degree part. By Proposition 5.6, it suffices to
show that the total influence of a width-w DNF is bounded by 2w. As the proof does not use any
Fourier analysis, let us stick with {0, 1} for ease of understanding.

Claim 8.9. Let f : {0, 1}n → {0, 1}, then I[f] ≤ 2w.

Remark 8.10. Recall that any Boolean function on w bits can be computed by a width-w DNF
and the parity on w bits has total influence w.

Proof. We first claim that

Infi[f] = Pr
x

[
f(x) ̸= f(x⊕i)

]
= 2Pr

x

[
f(x) = 1 ∧ f(x⊕i) = 0

]
.

To see this, observe that x and x⊕i are identically distributed and so Prx[f(x) = 0∧ f(x⊕i) = 1] =
Prx[f(x) = 1 ∧ f(x⊕i) = 0]. We will instead look at the average sensitivity of f . We have

I[f] = 2
n∑

i=1

Pr
x

[
f(x) = 1 ∧ f(x⊕i) = 0

]
= 2E

x

[
#{i ∈ [n] : f(x) = 1 ∧ f(x⊕i) = 0}

]
.

Now, fix any x ∈ {0, 1}n such that f(x) = 1. Without loss of generality assume the first term is
satisfied and it contains the variables x1, . . . , xw. Flipping the bits xi : i > w does not change the
value of the first term and therefore does not change the outcome. Hence there can be at most w
sensitive coordinates for each x ∈ f−1{1}.

Corollary 8.11. If f : {−1, 1}n → {−1, 1} is computable by a width-w DNF, then it is ϵ-concentrated
on degree ≤ 2w/ϵ.

Later we will improve the 2w/ϵ to O(w log(1/ϵ)).

So far we have showed that small-width DNFs have low-degree concentration. Is the same true for
DNF of small size? We now show well-known fact that a size-s DNF is ϵ-close to a width-O(log(s/ϵ))
DNF.

Proposition 8.12. Every f : {0, 1}n → {0, 1} computable by size-s DNF is ϵ-close to a DNF of
width O(log(s/ϵ)).

Proof. The observation is that a term with many literals is unlikely to be satisfied, so removing
it from the DNF only affects its expectation very little. Let F = T1 ∨ · · · ∨ Ts be the size-s DNF
computing f . Let S := {i ∈ [n] : Ti has more than log(s/ϵ) literals}. Define F ′ =

∧
i∈S Ti. Observe

that F ′(x) ≤ F (x) for every x ∈ {0, 1}n, and

Pr
x
[F (x) = 1 ∧ F (x) = 0] ≤ Pr

x
[F (x) = 1 ∧ F (x) = 0] ≤ Pr

x
[Ti(x) = 1 for some i ∈ S] ≤ ϵ.

Recall in Proposition 6.10 we showed that ϵ-closeness in L2-distance and ϵ-spectral concentration
are equivalent. So we have the following corollary.

Corollary 8.13. Every size-s DNF is ϵ-concentrated on degree at most O(log(s/ϵ)/ϵ).

As a result, we have the following learning algorithm for DNFs.

30

Corollary 8.14. Every size-s DNF can be learned using random examples within 0.01-accuracy in
time nO(log s).

We end this lecture by recording a longstanding conjecture by Mansour about the Fourier
spectrum of DNFs.

Conjecture 8.15 (Mansour’s Conjecture). Every width-w DNF is 0.01-concentrated on 2O(w)

coefficients.

Thus, not only the heavy coefficients are concentrated in the low-degree part, but they are
also conjectured to be quite sparse. Note that this also implies every poly(n)-size DNF is 0.01-
concentrated on poly(n) many coefficients.

31

CS229BR: Analysis of Boolean Functions Lecture 9
Harvard University Oct 04 2022

9.1 Random restrictions

We introduce the concept of random restrictions. First let us define restrictions properly.

Definition 9.1. For a subset J ⊆ [n] and z ∈ {−1, 1}J , the restriction of f to J with z is the
function fJ,z : {−1, 1}J → {−1, 1} defined by

fJ,z(x) := f(x ◦ z).

Recall from the last lecture and Homework 1 that we compute at the Fourier coefficients f̂J,z
with J = [k] by first writing down the Fourier expansion of f as

f(x ◦ z) =
∑
S⊆J

∑
T⊆J

f̂(S ∪ T)χS(x)χT (x) =
∑
S⊆J

(∑
T⊆J

f̂(S ∪ T)χT (x)
)
χT (x).

Using the uniqueness of Fourier expansion we immediately have the following formula for f̂J,z(S).

Proposition 9.2. f̂J,z(S) = 1(S ⊆ J)
∑

T⊆J f̂(S ∪ T)χT (z).

Since fJ,z is defined on {−1, 1}J , the indicator 1(S ⊂ J) is redundant. However, we will often
think of fJ,z as a function on x ∈ {0, 1}n but ignoring the J portion of x. So we will keep the
indicator as is.

We often look at the fJ,z for a random z ∼ {−1, 1}J , and we have the following formulas.

Proposition 9.3. We have

1. Ez∼{−1,1}n [f̂J,z(S)] = 1(S ⊆ J)f̂(S)

2. Ez∼{−1,1}n [f̂J,z(S)
2] = 1(S ⊆ J)

∑
T⊆J f̂(S ∪ T)2.

We can of course choose J at random as well. This leads to the concept of random restrictions,
a fundamental concept in theoretical computer science, which we will many applications of it in the
upcoming lectures.

Definition 9.4 (Random restriction). Let ρ ∈ [0, 1]. A ρ-random restriction, denoted by Rρ, is a
pair (J , z) sampled as follows.

1. J ∼ρ [n]: include each i ∈ [n] to J with probability ρ independently

2. z ∼ {−1, 1}n is uniform.

Given x ∈ {0, 1}n, we can think of f̂J ,z(x) (as a function on {0, 1}n) as setting each coordinate

xi to uniform independently with probability 1− ρ. So f̂J ,z(x) is identically distributed as f(y),
where y ∼ Nρ(x) is the noisy random string defined in Definition 5.8.

Proposition 9.5. Let Rρ be a ρ-random restriction. Then

1. E(J ,z)∼Rρ
[f̂J ,z(S)] = ρ|S| · f̂(S)

2. E(J ,z)∼Rρ
[f̂J ,z(S)

2] =
∑

U⊆[n] f̂(U)2Pr[U ∩ J = S].

32

Proof. We prove Item 2.

E
J∼ρ[n]

[
1(S ⊆ J)

∑
T⊆J

f̂(S ∪ T)2
]
=
∑
U⊆[n]

f̂(U)2 E
J∼ρ[n]

[
1(U ∩ J = S)

]
.

We can often relate a measure of a typical fJ ,z to the same measure of f , and vice versa. The
total influence is one example.

Proposition 9.6. E(J ,z)∼Rρ
[I[fJ ,z]] = ρ · I[f].

Proof. Recall that I[f] =
∑

S⊆[n]|S|f̂(S)2. So

E
(J ,z)∼Rρ

[∑
S⊆[n]

|S|f̂J ,z(S)
2

]
=
∑
S⊆[n]

|S| E
(J ,z)∼Rρ

[
f̂J ,z(S)

2
]

=
∑
S⊆[n]

|S|
∑
U⊆[n]

f̂(U)2 Pr
J∼ρ[n]

[U ∪ J = S]

=
∑
U⊆[n]

f̂(U)2
∑
S⊆[n]

|S| Pr
J∼ρ[n]

[U ∪ J = S]

=
∑
U⊆[n]

f̂(U)2 E
J∼ρ[n]

[
|U ∪ J |

]
=
∑
U⊆[n]

f̂(U)2ρ|U | = ρ · I[f].

33

CS229BR: Analysis of Boolean Functions Lecture 10
Harvard University Oct 06 2022

(The following two lectures have no Fourier analysis. We will study the Fourier implications of
these lemmas after these lectures.)

10.1 Switching Lemma

We study the random restrictions of a DNF formula. Recall that while the negation of a DNF
can be computed by a CNF of the same size and width, the DNF itself could require a CNF of
exponential size to compute. We will show that if we apply a random restriction to a DNF, then a
typical restricted DNF can be computed by a CNF of a similar complexity. Recall that a depth-k
decision tree can be computed by a width-k CNF.

Lemma 10.1. If f : {0, 1}n → {0, 1} is computable by a DNF of width-w, then

Pr
τ∼Rρ

[depthDT (f |τ) ≥ k] ≤ (10ρw)k.

Suppose ρ = 1/(100w), then the probability that f |τ cannot be computed by a depth-k is
exponential small in k. Note that the bound on the right hand side is independent on the number
of variables n.

To prove this lemma we first consider a decision tree of a special form that we call canonical
decision trees. We will describe the canonical decision tree using the following query algorithm.

Algorithm 3: Query algorithm of a canonical decision tree (CDT)

Input: x ∈ {0, 1}n, with access to f |τ
Output: {0, 1}

1 Set j = 0.
2 while f |τ◦π1···πj is not constant do
3 Set j = j + 1
4 Let Tij be its first non-constant term in f |τ◦π1···πj−1

5 Query the variables in Tij

6 Let πj be the answer, and σj be the satisfying assignment of Tij

7 if πj = σj, i.e., fτπ1···πj ≡ 1 then return 1.

8 end
9 return 0

A canonical decision tree queries all the variables in Tij at once, which is not necessarily the
case for a general decision tree. Since a canonical decision tree is also a decision tree, we have that

Pr
τ∼Rρ

[depthDT (f |τ) ≥ k] ≤ Pr
τ∼Rρ

[depthCDT (f |τ) ≥ k].

Let us call a restriction τ ∈ Rρ bad if depthCDT (f |τ) ≥ k. For each bad restriction τ , we can
find a path of length k in CDT. Let us take the first such π to witness τ is bad. Observe that given
a description of π, there is a 1-1 correspondence between τ and τ ◦ π, because we can use π to undo
the restriction π in τ ◦ π to get back τ . For a fixed witness π, we have

Pr[Rρ = τ ◦ π] = Pr[Rρ = τ] ·
(
1− ρ

2

)k

·
(
1

ρ

)k

(6)

34

because in the restriction τ the k variables in π were retained by Rρ with probability ρk, and the
same k variables are randomly fixed by Rρ in τ ◦ π with probability (1−ρ

2)k. Since for a fixed ρ there
is a bijection between τ and τ ◦ π, we have

∑
bad τ

with witness π

Pr[Rρ = τ] =
∑
bad τ

with witness π

Pr[Rρ = τ ◦ π] ·
(

2ρ

1− ρ

)k

. (7)

Summing over all the witnesses π, we have

Pr
τ∼Rρ

[τ is bad] ≤
∑
π

∑
bad τ

with witness π

Pr[Rρ = τ] ≤ (# of witnesses π) ·
(

2ρ

1− ρ

)k

.

We can encode each witness π with ([n]× {0, 1})k, specifying the indices of the variables and their
restricted value in π. Hence the number of π’s can be bounded above by (2n)k. However, our bound
in Lemma 10.1 has no dependence on n, and we would like the n be replaced by w. We will show
that by a slight tweak of the argument we can encode π with ([w]× {0, 1})k.

10.1.1 Succinct encoding of witnesses

We now explain how to tweak our previous argument to improve our encoding of the witnesses.

Warm up. Let us first consider the case w = 1, which captures the main idea. A width-1 DNF
is simply an OR function. Suppose f is the OR function of 4 variables x1, . . . , x4, and τ fixes x2
to 0. It should be clear that depthCDT (f |τ) ≥ 3. The restriction π = π1π2 = (x1 = 0, x3 = 0) is a
witness of depthCDT (f |τ) ≥ 2, and there is a bijection between τ and (τ ◦ π, π), where we encode
the witness by π ∈ ([n]× {0, 1})2. We now show that there is another bijection that admits a more
succinct encoding of π.

Observe that no terms in f |τ , f |τπ1 can be satisfied, for otherwise π is not a valid witness. We
are going to use this observation to use a different restriction σ to encode the indices ij of the terms
Tij containing each of x1, x3.

Consider the pair (τ ◦ σ, π), where σ = σ1σ2 = (x1 = 1, x3 = 1). We claim that in this case, we
do not even need π to recover π, that is, there is a bijection between (τ ◦π, π) and τ ◦σ. To see this,
given f |τ◦σ1σ2 = 1 ∨ 0 ∨ 1 ∨ x4, we look for the first term (= variable) that is satisfied. This reveals
x1 as the term that was restricted, and since f |τπ1 cannot be satisfied, we must have π1 = (x1 = 0).
So now we consider f |τ◦π1σ2 = 0 ∨ 0 ∨ 1 ∨ x4 and again look for the first term that is not satisfied.
This reveals x2 as the restricted variable in σ2 and π2, and so by the same reasoning we must have
π2 = (x2 = 0).

The same idea extends to an arbitrary width-w DNF as follows. Recall the σj defined in the
Algorithm 3. We claim that there is a bijection between τ and (τ ◦ σ, π), where we encode π with
elements in ([w] × {0, 1})t3 , with [w] being the relative indices of πj within a term in f .4 We
describe how to decode in Algorithm 4.

3To be more precise, we also need to specify which variable is the last one in a term Ti,j because distinct indices
may share the same relative index across terms, but we can encode each index by [w]× {non-last, last}, which only
costs a factor of 2 in the base.

4Thanks to Aaron (Louie) Putterman for pointing out that this should be f and not f |τ , because in the decoding
algorithm we do not know f |τ .

35

Algorithm 4: Decoding (πσ, π) to τ

Input: τσ and π ∈ ([w]× {0, 1})k, with access to a width-w DNF f
Output: τ

1 Let σ = σ1 · · ·σs and π = π1 · · ·πs, where π ∈ ([w]× {0, 1})k. for j = 1, . . . , s do
2 Let Tij be the first term in f |τ◦π1···πj−1σj ···σs with Ti = 1
3 Use πj to locate indices of the restricted variables
4 Replace σj with πj
5 end
6 Undo the restriction π.

Finally, observe that Pr[Rρ = τ ◦ σ] = Pr[Rρ = τ ◦ π] because both restrictions fix the same
number of variables. So we can replace the former by the latter in Equation (6). Then in Equation (7),
the number of witnesses can be bounded above by (2w)k, giving us

Pr
τ∼Rρ

[τ is bad] ≤
(

4ρw

1− ρ

)k

.

10.1.2 An example

Consider
f(x1, . . . , x8) := x1x2x4︸ ︷︷ ︸

T1

∨x1x2x5︸ ︷︷ ︸
T2

∨x4x6︸︷︷︸
T3

∨x7x8︸︷︷︸
T4

.

Let τ = (x1 = 1), and so

f |τ (x1, . . . , x8) = x2x4 ∨ x2x5 ∨ x4x6 ∨ x7x8.

x2

x4

x5

x7

x8

10

0 1
0

0 1
1

0 1
x5

x6

1x7

0 1
1

0 1

0 1
x4

1x6

1x7

x8

10

0 1
0

0 1

0 1

0 1

0 1

Figure 2: A canonical decision tree computing f . The red path of length-4 is our witness.

We have a witness π = π1π2π3 for depthCDT (f) ≥ 4, where π1 = (x2 = 0, x4 = 0), π2 = (x6 = 0),
and π′

3 = (x7 = 0). We also have σ = σ1σ2σ3, where σ1 = (x1 = 0, x4 = 1), σ2 = (x6 = 1),
and σ3 = (x7 = 1). We encode each xj being restricted by their relative index in term Ti being

36

looked at. So we encode π1 as (y2 = 0, y3 = 0), π2 as (y2 = 0) and π′
3 as (y1 = 0). Note that

Pr[Rρ = τ] =
(1−ρ

2

)
· ρ7, and Pr[Rρ = τ ◦ π] = Pr[Rρ = τ ◦ σ] =

(1−ρ
2

)5 · ρ3. We also have

f |τσ1σ2σ′
3
= (1 · 1 · 1) ∨ (1 · 0 · x5) ∨ (0 · 1) ∨ (1 · x8) = 1 ∨ 0 ∨ 0 ∨ x8

f |τπ1σ2σ′
3
= (1 · 1 · 0) ∨ (1 · 0 · x5) ∨ (1 · 1) ∨ (1 · x8) = 0 ∨ 0 ∨ 1 ∨ x8

f |τπ1π2σ′
3
= (1 · 1 · 0) ∨ (1 · 0 · x5) ∨ (1 · 0) ∨ (1 · x8) = 0 ∨ 0 ∨ 0 ∨ x8.

37

CS229BR: Analysis of Boolean Functions Lecture 11
Harvard University Oct 11 2022

11.1 Multi-switching lemma

Definition 11.1 (Partial decision tree). We say m functions f1, . . . , fm : {0, 1}n → {0, 1} are
computable by a q-partial decision tree of depth d if there is a depth-d decision tree T such that for
every root-to-leaf path τ in T , every fi|τ is computable by a decision tree of depth at most q.

In other words, the query algorithm for a q-partial depth-d decision tree can

1. globally query d bits of the input x, and then

2. for each of the restricted functions (induced by the global queries) fi|τ , it can further locally
query another q bits to compute its output. Note that it can make different local queries for
different fi’s.

Lemma 11.2 (Multi-switching lemma (Impagliazzo–Matthews–Paturi 2012, H̊astad 2014). Suppose
f1, . . . , fm are computable by DNFs of width-w. Then

Pr
[
f1, . . . , fm do not have a q-partial decision tree of depth < d

]
≤ m⌈d/q⌉ · (100ρw)d.

Proof attempt. For each “bad” restriction τ , we find a path γ of length d in the “canonical
partial decision tree” and encode it succinctly. We will consider a path γ in the partial decision tree
by going through as few DNFs as possible as follows.

Specifically, we look at the first DNF fℓ1 with depthDT (fℓ1 |τ) =: k1 > q, then find a restriction
π1 of length k1 that witnesses depthCDT (fℓ1 |τ) > q. Then we apply the restriction π1, and look
at the first DNF fℓ2 with depthDT (fℓ1 |τπ1) =: k2 > q, and find a restriction π2 that further fixes
another k2 > q variables. Continuing this way, we can find a restriction π := π1 · · ·πt of d variables
by going through t ≤ ⌈d/q⌉ many DNFs.

Our final witness for a bad restriction would be a list ℓ of the indices ℓi’s of the DNFs we looked at,
and the encoding of the restriction π = π1 · · ·πt. As in the proof of the switching lemma, we encode
π succinctly in ([w]× {0, 1})d, by considering the bijection between τ and (τσ1 · · ·σt, L, π1 · · ·πt),
where σi is another restriction on the same ki variables as πi that helps us identify the terms in fℓi
that contains the variables in πi.

There are at most m⌈d/q⌉ different ways of choosing ⌈d/q⌉ out of m DNFs for our list ℓ, and so
we can conclude that the probability Rρ is bad is at most m⌈d/q⌉ · (10ρw)d.

Issue. The argument above fails because the local restriction π1 can globally affect the complexity
of the rest of the DNFs: it could be the case that after fixing π1, the DNF f1|τπ, . . . , fm|τπ1 have a
q-partial decision tree of small depth. The statement “f1|τ , . . . , fm|τ do not have a q-partial decision
tree of depth d” only means that for every decision tree of depth d, there is a restriction γ and
ℓ ∈ [m] such that depthDT (fℓ|τ) > q. There is no reason to believe π1 is the “right prefix” of γ.

Solution. To get around this issue, we will use a global witness γ1 together with the local witness
π1. The global witness γ1 restricts the same set of variables I1 as π1 but assigns them to some
different values in order to witness the global condition, namely, the DNFs f1|τ◦γ1 , . . . , fm|τ◦γ1
have no q-partial decision of depth > d − |γ1|. (There is always such a choice of γ1, otherwise
f1|τ , . . . , fm|τ have a q-partial decision tree of depth (d− |γ1|) + |γ1| = d.) The local witness π is
then used to succinctly encode the indices of the variables in γ using the switching lemma argument.

38

Overall argument. If f⃗ |τ := (f1|τ , . . . , fm|τ) do not have a q-partial decision tree of depth d,
then there exists a DNF fℓ1 |τ with depthCDT (fℓ1 |τ) =: k1 > q and thus it contains k > q unfixed

variables. We fix all these variables by some γ1 so that f⃗ |τγ1 do not have a q-partial decision tree of
depth d− |γ1|. Then we find a DNF fℓ2 |τ◦γ1 with depthCDT (fℓ2 |τ◦γ1) =: k2 > q, and fix all these k2
variables by some γ2 so that ⃗fτ◦γ1γ2 do not have a q-partial decision tree of depth d− |γ1| − |γ1|.
Repeating the same argument, we have a restriction γ1, . . . , γt on d variables for some t ≤ ⌈d/q⌉.
Given γ := γ1, . . . , γt ∈ [n]≤⌈d/q⌉, there is a bijection between τ and τ ◦ γ1 · · · γt and so we have the
relation ∑

bad τ with
witness γ

Pr[Rρ = τ] ≤
∑

bad τ with
witness γ

Pr[Rρ = τ ◦ γ1 · · · γt]
(

2ρ

1− ρ

)d

≤ 1 ·
(

2ρ

1− ρ

)d

.

We now show how to encode γ succinctly. Recall in the proof of the switching lemma that if
depthCDT (fℓ1 |τ◦γ1···γi−1) = ki, then there is a restriction πi on the same k variables as γi witnessing
a path of length ki in its canonical decision tree, and there is another restriction σi on the same k
variables so that given (τ ◦γ1 · · · γi−1σi, πi), where πi ∈ ([w]×{0, 1})ki , we can identify the variables
in πi.

So given ℓi ∈ [m], πi ∈ ([w] × {0, 1})k and γi ∈ {0, 1}k, we can identity the variables in
πi and recover τ ◦ γ1 · · · γi from τ ◦ γ1 · · · γi−1 ◦ σi. Repeating this iteratively, we can recover
τ ◦ γ1 · · · γt from τ ◦ σ1 · · ·σt, given ℓ := (ℓ1, . . . , ℓt) ∈ [m]t, π := π1, . . . , πt ∈ ([w] × {0, 1}t) and
γ := γ1, . . . , γt ∈ {0, 1}t. In particular, we can identify the variables in γ1, . . . , γt, which allows us
to recover τ . So we have the relation∑

bad τ with
witness ℓ, π, γ

Pr[Rρ = τ] ≤
∑

bad τ with
witness ℓ, π, γ

Pr[Rρ = τ ◦ σ1 · · ·σt]
(

2ρ

1− ρ

)d

≤ 1 ·
(

2ρ

1− ρ

)d

,

and we can now bound above the number of witnesses by m⌈d/q⌉ · (2w)d · 2d ≤ m⌈d/q⌉ · (100ρw)d. 5

We now go through the details. First we explain how to construct our canonical partial decision
tree in Algorithm 5. Note that the ℓi’s in Algorithm 5 may not be distinct, because unlike πi, the
restriction γi does not necessarily make fℓi constant. We choose the πi’s so that each of them
restricts at least depthCDT (fℓi |τ◦γ1,...,γi−1) > q variables.

Let L = (ℓ1, . . . , ℓt), π = π1 · · ·πt, γ = γ1 · · · γt, and σ = σ1 · · ·σt. Note that all 3 restrictions
πi, γi, σi restrict the same set of variables but to different values. Given L, π and γ, we show in
Algorithm 6 that the map τ ↔ τσ is bijective.6

We can encode L by [m]⌈d/q⌉, π ∈ ([w]× {0, 1})d, and γ ∈ {0, 1}d. Therefore,

∑
bad τ with

witness L, π, γ

Pr[Rρ = τ] ≤
∑

bad τ with
witness L, π, γ

Pr[Rρ = τσ]

(
2ρ

1− ρ

)d

≤ 1 ·
(

2ρ

1− ρ

)d

.

So

Pr[Rρ is bad] ≤ m⌈d/q⌉ · (2w)d · 2d ·
(

2ρ

1− ρ

)d

≤ m⌈d/q⌉ · (100ρw)d.

5More precisely, we encode ℓ ∈ ([m]∪ {∗})⌈d/q⌉ because the number of DNFs is at most but not exactly ⌈d/q⌉, and
encode π ∈ ([w]× {non-last, last} × {0, 1})d to indicate whether the restricted variable being looked at is the last one
so that we can move on to the next term. We are ignoring these technicalities since it only affect by a factor of O(1)d.

6More precisely, we do not know s, but we can handle this using the encoding in Footnote 5.

39

Algorithm 5: Query algorithm of a canonical partial decision tree

Input: A global string x ∈ {0, 1}n, with access to an auxiliary local string y ∈ {0, 1}n, the
restriction τ , and f1, . . . , fm

Output: A partial assignment γ
1 Set t = 0
2 while |γ| < d do
3 if depthDT (fℓ|τ◦γ1···γt) ≤ q for each ℓ ∈ [m] then STOP
4 Set t = t+ 1
5 Let ℓt be the first ℓ with depthCDT (fℓ|τ◦γ1···γt−1) > q
6 Set s = 0.
7 while fℓt |τ◦γ1···γt−1◦πt,1···πt,s is not constant and |γ1 · · · γt−1 ◦ πt,1 · · ·πt,s| < d do
8 Set s = s+ 1
9 Let Tit,s be its first non-constant term, and It,s be the indices of variables in Tit,s

10 Query the local variables yIt,s
11 Let πt,s be the answer, and σt,s be the satisfying assignment of Tit,s

12 if πt,s = σt,s then STOP and return ERROR

13 end
14 Let It := ∪s

u=1It,u
15 Query the global variables xIt
16 Let γt be the answer

17 end
18 return γ1 · · · γt

Algorithm 6: Decoding τσ to τ given L, τ, γ

Input: τ ◦ σ1 · · ·σt, given L = (ℓ1, . . . , ℓt) ∈ [m]≤⌈d/q⌉, π = π1 · · ·πt ∈ ([w]× {0, 1})d and
γ = γ1 · · · γt ∈ {0, 1}d and description of f1, . . . , fm.

Output: τ
1 for i = 1, . . . , t do
2 Let πi = (πi,1, . . . , πi,s)
3 for j = 1, . . . , s do
4 Let Tij be the first satisfied term in fℓi |τ◦γ1···γi−1◦πi,1···πi,j−1σi,j ···σi,s

5 Replace σi,j with πi,j
6 end
7 Replace πi with γi
8 end
9 Undo the restriction γ

40

CS229BR: Analysis of Boolean Functions Lecture 12
Harvard University Oct 13 2022

12.1 Spectral concentration of DNFs

We look at some Fourier implication of the switching lemma and multi-switching lemma. We first
prove a sharp bound on the low-degree concentration result for DNFs, improving the one we proved
before using the bound on the total influence of DNFs. We first set up a definition for convenience.

Definition 12.1. The Fourier tail of f at level k, denoted W≥k[f], is

W≥k[f] :=
∑
|S|≥k

f̂(S)2 = Pr
S∼S

[
|S| ≥ k

]
.

Lemma 12.2. If f : {−1, 1}n → {−1, 1} is computable by a width-w DNF, then W≥k[f] ≤ 2−Ω(k/w).
In other words, f is ϵ-concentrated on degree at most O(w log(1/ϵ)).

Recall the switching lemma says that with high probability over a ρ-random restriction on a
width-w DNF f , the restricted function can be computed by a small-depth decision tree, which is
0-concentrated on the low degree. We will relate the tail of f to the tail of the random restriction of
f .

Claim 12.3. W≥k[f] ≤ 2Eτ∼Rρ [W
≥ ρk

2 [f |τ]].

Proof. Recall from Proposition 9.5 that for a ρ-random restriction (J , z) ∼ Rρ, we have

E
(J ,z)∼Rρ

[
f̂J ,z(S)

2
]
=
∑
U⊆[n]

f̂(U)2 Pr
J∼ρ[n]

[U ∩ J = S].

So

E
(J ,z)∼Rρ

[∑
|S|≥k

f̂J ,z(S)
2

]
=
∑
U⊆[n]

f̂(U)2
∑
|S|≥k

Pr
J∼ρ[n]

[
U ∩ J = S

]
=
∑
U⊆[n]

f̂(U)2 Pr
J∼ρ[n]

[|U ∩ J | ≥ k]

=
∑
U⊆[n]

f̂(U)2Pr[Bin(|U |, ρ) ≥ k]

≥ 2

3

∑
|U |≥2k/ρ

f̂(U)2 =
2

3
·W≥2k/ρ[f],

where the inequality is because whenever |U | ≥ 2k/ρ, we have Pr[Bin(|U |, ρ) ≥ k] ≥ 2/3.

Proof of Lemma 12.2. We apply Claim 12.3 and the switching lemma with ρ = 1/(20w),

1

2
W≥k[f] ≤ E

τ∼Rρ

[
W≥ρk/2[f |τ]

]
≤ E

τ∼Rρ

[
W≥ρk/2[f |τ] · 1(depthDT (fτ) < ρk/2)

]
+ E

τ∼Rρ

[
W≥ρk/2[f |τ] · 1(depthDT (fτ) ≥ ρk/2)

]
≤ (10ρw)ρk/2 ≤ 2−Ω(k/w).

41

CS229BR: Analysis of Boolean Functions Lecture 13
Harvard University Oct 18 2022

13.1 Spectral concentration of small-depth circuits

We now use the multi-switching lemma to extend our low-degree concentration result for the class
of constant-depth circuits, a generalization of DNF formulas.

Definition 13.1. A depth-D circuit on n variables x1, . . . , xn is a layered directed acyclic graph
with D + 1 layers. The bottom layer 0 has 2n nodes representing xi and xi and the top layer D has
exactly 1 node. Each edge goes from some (j − 1)-th layer to the j-th layer. For layers j ≥ 1, all
nodes in the same layer have the same label ∧ or ∨. Nodes in adjacent layers have different labels,
so the labels alternate between layers. Each node computes the function labeled by the node with
inputs being the functions computed by their incoming nodes.

The size of a circuit is the number of nodes in layers ≥ 1, i.e., the number of AND/OR gates in
the graph.

Note that CNFs and DNFs are depth-2 circuits. We use AC0 to denote the class of constant-
depth circuits. (AC stands for alternating circuits; the superscript 0 stands for depth O((log n)0).
Sometimes AC0 circuits are assumed to have size polynomial in n, but here we will always specify the
size of the circuits when we talk about them. The class AC0 was first introduced by Furst, Saxe and
Sipser (1981), and Ajtai (1982), who showed that the parity function on n bits cannot be computed
by circuits of constant depth and polynomial size. Furst, Saxe and Sipser observed a connection
between AC0 and the polynomial hierarchy (PH) which can be used to give oracle separation between
PH and PSPACE. Shortly after, Yao (1985) and H̊astad (1986) strengthened their results and gave
exponential lower bounds on the size of AC0 circuits computing the parity function. The result
by H̊astad also implicitly gave correlation bounds of AC0 and the parity function. Specifically, it

showed that every function f computable by a depth-D circuit of size m ≤ 2o(1/n
1

D−1) must satisfy

Pr
x
[f(x) = Parityn(x)] ≤ 1/2 + 2−Ω(n

1
D−1).

Finally, Impagliazzo, Matthews, Paturi (2012) and H̊astad (2014) gave tight correlation bounds.
They showed that every function f computable by a depth-D size-m circuit must satisfy

Pr
x
[f(x) = Parityn(x)] ≤ 1/2 + 2

− n

O(logm)D−1 .

It is tight in the sense that a depth-D circuit of size 2n
O(1

D−1
)

can compute the parity function
on n bits exactly.

Let us show how to construct a depth-3 circuit of size 2O(
√
n) that computes the parity function;

the same idea generalizes to larger d straightforwardly. Recall that every Boolean function on n bits
can be trivially computed by a decision tree of size at most 2 · 2n (by exhausting the 2n possible
inputs), and thus can be computed by both a CNF and a DNF of size at most 2 · 2n. We divide the
n input bits into blocks of

√
n bits, then compute the parity of the parities of the

√
n blocks. The

parity of each of the
√
n blocks can be computed by a DNF of size 2 · 2

√
n, and the parity of the

√
n

outputs can be computed by a CNF of size 2 · 2
√
n. So we have an AND of ORs of ORs of ANDs,

and merging the two levels of ORs gives us a depth-3 circuit of size O(
√
n) · 2

√
n = 2O(

√
n).

Note that this lower bound remains state-of-the-art for depth-3 circuits.

42

Open Problem 13.2. Give an explicit function f (say polynomial-time computable) such that
every depth-3 circuit computing f has size 2ω(

√
n).

We will prove the following result by Tal (2015) which generalizes the above correlation bound.

Theorem 13.3. If f is computable by a depth-D circuit of size m, then

W≥k[f] ≤ 2 · 2−
k

O(logm)D−1 .

In other words, f is ϵ-concentrated on degree at most O(logD−1(m) · log(1/ϵ)).

Note that by setting k = n we recover the above correlation bound, because W≥n[f] =
f̂([n])2 = Ex[f(x)χ[n](x)]

2. Also note that Theorem 13.3 is also a tight strengthening of the
Linial–Mansour–Nisan result in O’Donnell’s book (Chapter 4.5), which showed that depth-D circuits
are ϵ-concentrated on degree O(logD(m/ϵ)).

13.1.1 Proof of Theorem 13.3

We now prove Theorem 13.3. We will prove a more general bound which depends on the bottom
fan-in of the circuit and its effective size, defined to be the number of gates in layers ≥ 2.

Lemma 13.4. Suppose f is computable by a depth-D circuit of effective size m and bottom fan-in
w. Then

W≥k[f] ≤ 2 · 2−
k

w·O(logm)D−2 .

To see how Lemma 13.4 implies Theorem 13.3, observe that by adding a dummy layer of fan-in
1 AND (or OR) gates between the inputs and the gates at the bottom layer of a depth-D circuit of
size m, we obtain a depth-(D + 1) circuit of effective size m with bottom fan-in 1. Now applying
Lemma 13.4 gives us the bound we want.

We will prove Lemma 13.4 for the special case of AND of DNFs (a depth D = 3 circuit) by
reducing it to a CNF (a depth D = 2 circuit) using random restrictions; the general case can be
proved by induction on D.

Like the last lecture, we are going to relate the tail of the circuit to (the average of) the tail of
its random restrictions. Suppose the bottom two layers of the circuit are ORs of ANDs (i.e. DNFs).
We will apply a random restriction to switch the restricted DNFs into CNFs, so that the circuit
becomes an AND of ANDs of ORs, and we can collapse the two adjacent layers of ANDs, resulting
a depth-2 circuit, for which we can apply our Fourier tail bound for DNFs/CNFs (Lemma 12.2)
proved in the last lecture.

There are at most m DNFs at the bottom two levels (because the circuit has effective size at
most m). Let us call them g1, . . . , gm′ for some m′ ≤ m. We first apply a random restriction τ , so
that with high probability over τ , the restricted DNFs can be computed by a depth (logm)-partial
depth-d decision tree. Conditioned on this “good” event, if we further fix any path π in the partial
decision tree, each of the restricted DNFs gi|τ◦π can be computed by a depth (logm)-decision tree,
and therefore can be computed by a CNF of width logm. So the restricted circuit (under τ ◦ π) is
a depth-2 circuit of effective size at most m and bottom fan-in logm.

We now prove it formally. The following lemma follows from choosing q = logm in the
multi-switching lemma (Lemma 11.2), and observing that m⌈d/q⌉ ≤ md/q+1 ≤ m · 2d.

Lemma 13.5. Suppose f1, . . . , fm be width-w CNFs. Then

Pr
τ∼Rρ

[
f1|τ , . . . , fm|τ do not have a (logm)-partial decision tree of depth d

]
≤ m · (200ρw)d.

43

Let us restate our claim that relates the tail of f to (the average of) the tail of its random
restrictions.

Claim 13.6. W≥k[f] ≤ 2Eτ∼Rρ [W
≥ ρk

2 [f |τ]].

We also need the following claim to relate the tail of f to its (deterministic) restrictions.

Claim 13.7. Let T be a depth-d (partial) decision tree. If for every root-to-leaf path π we have
W≥k−d[f |π] ≤ ϵ, then W≥k[f] ≤ ϵ.

We will prove Claim 13.7 in Homework 3.

Proof of Lemma 13.4. Let f be computable by an AND of DNFs of effective size m and bottom
fan-in w. Let g1, . . . , gm′ be the m′ ≤ m DNFs in the bottom 2 layers. Let E be the event
“g1|τ , . . . , gm′ |τ have a (logm)-partial decision tree of depth d.” We have

1

2
W≥k[f] ≤ E

τ∼Rρ

[
W≥ρk/2[f |τ]

]
≤ E

τ∼Rρ

[
W≥ρk/2[f |τ] · 1(E)

]
+ E

τ∼Rρ

[
W≥ρk/2[f |τ] · 1(E)

]
.

Conditioned on E, let T be the depth-d partial decision tree computing g1|τ , . . . , gm′ |τ . By the
definition of partial decision tree, for every fixed path π in T , each gi|τπ can be computed by a CNF
of width logm. So f |τπ can be computed by an AND of CNFs, which by collapsing the top two
layers of ANDs, is a CNF of size at most m. (This is where we use effective size, as the switch may
introduce more gates in the bottom layer.) So by Claim 13.7, we have

E
τ∼Rρ

[
W≥ρk/2[f |τ]

]
≤ max

π∈T
W≥ρk/2−d[f |τ◦π].

We choose d = ρk/4 and ρ = 1/(400w). Then by Lemma 12.2 the above is at most 2
− ρk

O(logm) ≤
2
− k

w·O(logm) .
It remains to bound above the probability of the bad event. We have

E
τ∼Rρ

[
W≥ρk/2[f |τ] · 1(E)

]
≤ Pr[E] ≤ m · (100ρw)d ≤ m · 2−k/O(w) ≤ 2 · 2−

k
w·O(logm) .

So Eτ∼Rρ

[
W≥ρk/2[f |τ] · 1(E)

]
+Eτ∼Rρ

[
W≥ρk/2[f |τ] · 1(E)

]
≤ 2 · 2−

k
w·O(logm) , as desired.

44

CS229BR: Analysis of Boolean Functions Lecture 14
Harvard University Oct 25 2022

14.1 Bonami’s lemma

Consider the random variable X, where X = n with probability 1/2 and −n otherwise. This
random variable has mean 0, but it puts no mass near the point 0; so knowing its mean reveals very
little information about about X. In many scenarios we would like a random variable to possess
some nice properties such as concentration and anti-concentration. We will look at some conditions
for a random variable to satisfy these properties. One condition is the following.

Definition 14.1. A real random variable X is B-reasonable if E[X4] ≤ B ·E[X2]2.

We can state the definition in terms of the norm of X.

Definition 14.2 (norms of a random variable). The q-norm of a real random variable X, denoted
by ∥X∥q is defined as

∥X∥q = E[|X|q]1/q.

So, X is B is reasonable if ∥X∥4 ≤ B1/4∥X∥2.
Let us consider some examples.

1. x ∼ {−1, 1}. We have E[x4] = E[x2]2 = 1 and thus x is 1-reasonable.

2. g ∼ N (0, 1), where N (0, 1) is the standard Gaussian. The 2k-th moment E[g2k] of g is at
most (2k)!! = (2k − 1)(2k − 3) · · · 1. So E[g4] = 3 and E[g2]2 = 1 and thus g is 3-reasonable.

3. u ∼ [−1, 1]. We have E[u4] = 1
2

∫ 1
−1 u

4du = 1
5 , and E[u2] = 1

2

∫ 1
−1 u

2du = 1
3 . So u is

9/5-reasonable.

4. Consider the AND : {0, 1}n → {0, 1} function. We haveEx∼{0,1}n [AND(x)
4] = Ex∼{0,1}n [AND(x)

2] =
2−n. So the random variable AND(x), where x ∼ {0, 1}n is 2n-reasonable.

Soon we will look at Boolean function f : {−1, 1} → R such that f(x) (on a uniform x ∼ {−1, 1}n)
is reasonable. Already in the last example, we saw that AND(x), which has degree-n, is not really
reasonable as 2n is large. The goal of this lecture is showing that f(x) is reasonable when f has low
degree.

But first let us show that reasonable random variables give concentration and anti-concentration
bounds. Recall the proof of Chebyshev’s inequality in basic probability. When we have a bound on
the higher moment of a random variable, we can apply a similar argument to get some concentration
bound.

Proposition 14.3. Suppose X ̸≡ 0 is B-reasonable. Then Pr[|X| ≥ t∥X∥2] ≤ B/t4.

Proof. By Markov’s inequality, Pr[x4 ≥ t4E[∥X∥42] ≤
E[X4]

t4·∥X4∥ ≤ B
t4
.

Reasonable random variables also satisfy the following anti-concentration property.

Proposition 14.4. Suppose X ̸≡ 0 is B-reasonable. Then Pr[|X| > t · ∥X∥2] ≥ (1−t2)2

B for every
t ∈ [0, 1].

45

Proof. This is similar to how one proves the Paley–Zygmund inequality (also called the 2nd moment
method). We consider Pr[X2 > t2 ·∥X∥22]. The idea is to relate the probability with the expectation
of X2 as follows:

E[X2] = E
[
X2 · 1(X2 > t2∥X∥22)

]
+E

[
X2 · 1(X2 ≤ t2∥X∥22)

]
.

The second term on the right hand side can be bounded above by t2∥X∥22; the first term can be
bounded using Cauchy–Schwarz by

E[|X|4]1/2 ·E
[
1(X2 > t2∥X∥22)2

]1/2
= E[X4]1/2 ·Pr

[
X2 > t2∥X∥22

]1/2
.

Rearranging gives

Pr
[
X2 > t2∥X∥22

]1/2 ≥ E[X2]− t2∥X∥22
E[X4]1/2

≥ (1− t2)
E[X2]

E[X4]1/2
≥ 1− t2√

B
.

Squaring both sides completes the proof.

One condition for a random variable to be reasonable is that it has low min-entropy.

Proposition 14.5. Let X be a real random variable such that minx∈Supp(X)Pr[X = x] ≥ λ. Then
X is (1/λ)-reasonable.

Proof. Let M := maxx∈Supp(X)|x|. Then E[X2] ≥ λM2, and so

E[X4] ≤ E[X2 ·X2] ≤ M2E[X2] ≤ 1

λ
E[X2]2.

We can see that for the proof to go through, we only need the weaker condition Pr[X = M] ≥ λ.

14.1.1 Low-degree polynomials are reasonable

Given x ∼ {−1, 1}n, we would like to characterize the functions f : {−1, 1}n → R such that f(x) is
reasonable. The Bonami’s lemma says that having low degree is a sufficient condition.

Lemma 14.6 (Bonami’s lemma). Suppose f : {−1, 1}n → R has degree k. Then f(x) is 9k-
reasonable for x ∼ {−1, 1}n. That is, E[f(x)4] ≤ 9k ·E[f(x)2]2.

We will decompose f into two parts. Once we have done that, the proof is a simple induction
on the number of variables n.

Recall in Definition 4.7 we defined the derivative operator Dif as

Dif(x) =
f(xi 7→1)− f(xi 7→−1)

2
=
∑
S∋i

f̂(S)xS\{i}.

We define another operator called the expectation operator, denoted Eif , defined as

Eif(x) = E
xi

[f(x1, . . . , xi−1,xi, xi+1, . . . , xn)] =
f(xi 7→1) + f(xi 7→−1)

2
=
∑
S ̸∋i

f̂(S)xS .

Observe that both Dif(x) and Eif(x) do not depend on xi. (So it is a function on the n − 1
variables x1, . . . , xi−1, xi+1, . . . , xn.) Also, if f has degree k ≥ 1 then Dif(x) has degree at most
k − 1. It is straightforward to verify that f(x) = xiDi(x) + Eif(x) for every i ∈ [n]. We now prove
Lemma 14.6.

46

Proof of Lemma 14.6. When n = 0, then the lemma is clear. Writing f := f(x), d := Dn(x), e :=
En(x), and using x2n = 1 and E[xn] = 0, we have

E[f4] = E[(xnd+ e)4] = E[d4] + 6E[d2e2] +E[e4]

E[f2] = E[(xnd+ e)2] = E[d2] +E[e2].

By Cauchy–Schwarz, E[d2e2] ≤ E[d4]1/2E[e4]1/2, and so

E[f4] ≤ E[d4] + 6E[d4]1/2E[e4]1/2 +E[e4]

≤ 9k−1 + 6 · 9
k−1
2 E[d2] · 9

k
2 E[e2] + 9k E[e2]2

≤ 9k
(
E[d2]2 + 2E[d2]E[e2] +E[e2]2

)
= 9k

(
E[d2] +E[e2]

)2
= 9k E[f2]2.

47

CS229BR: Analysis of Boolean Functions Lecture 15
Harvard University Oct 27 2022

15.1 Hypercontractivity

Recall the Bonami lemma says that for Boolean functions f : {−1, 1}n → R of degree at most k we
have

E[f(x)4] ≤ 9k E[f(x)2]2.

Equivalently, we have ∥f∥4 ≤
√
3
k∥f∥2. We can generalize this inequality from 4-norm to any

(q ≥ 2)-norm.

Lemma 15.1. ∥f∥q ≤
√
q − 1

k∥f∥2 for every f : {−1, 1}n → R of degree at most k.

We omit the proof but remark that the proof for even q follows from a similar inductive argument
to the q = 2 case. What about q < 2? Note that for q = 1, we can use the Cauchy–Schwarz to show
that

∥f∥1 = E
[
|f |
]
= E

[
1 · |f |

]
≤ ∥1∥2∥f∥2 = ∥f∥2.

In general we have ∥f∥q ≤ ∥f∥p whenever q ≤ p.

Proposition 15.2 (Norm inequality). ∥f∥q ≤ ∥f∥p for every 1 ≤ q ≤ p ≤ ∞,

To prove this, we will use the following fundamental inequality in analysis, which is a generaliza-
tion of the Cauchy–Schwarz inequality.

Proposition 15.3 (Hölder’s inequality). For every 1 ≤ r ≤ s ≤ ∞ such that 1
r +

1
s = 1, we have

E
[
|f(x) · g(x)|

]
≤ ∥f∥r∥f∥s.

Note that we have the Cauchy–Schwarz inequality by setting r = s = 2. We will see many
applications of this inequality in this lecture. First let us see how to use it to prove the norm
inequality.

Proof of Proposition 15.2. Let r := p/q ≥ 1 and s := 1/(1− 1/r). Then by Hölder’s inequality,

∥f∥q = E
[
1 · |f(x)|q

]1/q ≤ E
[
1s
]1/s ·E[|f(x)qr|]1/qr = ∥f∥p.

As Lemma 15.1 gives us a bound on the higher moments of f(x), we can prove a concentration
inequality using the same approach in Proposition 14.3.

Theorem 15.4. Let f : {0, 1}n → R be a function of degree at most k. Then Pr[|f(x)| ≥ t∥f∥2] ≤
4 · e−t2/k/2 .

We first make some remarks. First, note that without loss of generality we may assume E[f] = 0
as otherwise we can consider f ′ = f−E[f] which does not change the degree. So indeed Theorem 15.4
is bounding the deviation of f(x) from the mean. Also, when E[f] = 0, ∥f∥2 = E[f2]1/2 is the
standard deviation of f(x). In particular, if f is a linear function, then Theorem 15.4 is simply the
Hoeffding’s inequality. Therefore, we can think of this theorem as a generalization of tail bound for
sums of independent random variables to low-degree polynomial of independent random variables.

48

Proof of Theorem 15.4. As before we take powers of both sides of f(x) ≥ t∥f∥2 and then apply
Markov’s inequality and Bonami’s lemma. For every q ≥ 2 we have

Pr
[
|f(x)| ≥ t∥f∥2

]
= Pr

[
|f(x)|q ≥ t∥f∥q2

]
≤

E
[
|f(x)|q

]
tq · ∥f∥q2

=
1

tq
· ∥f∥

q
q

∥f∥q2
≤ 1

tq
· (
√
q − 1)kq

=

(
(q − 1)k/2

t

)q

.

We choose q to optimize this quantity. Note that if t2/k/2 < 1, then the bound in the theorem is

≥ 1 which is trivial. So we can assume t2/k/2 ≥ 1. Taking q = t2/k

2 ≥ 1, this is at most e−
t2/k

2 .

The Bonami lemma bounds above the 4-norm of f in terms of its 2-norm. What if we want to
bound its 2-norm in terms of its 1-norm? We can use the following trick.

Claim 15.5. Let f : {−1, 1}n → R be a polynomial of degree at most k. Then ∥f∥2 ≤ 3k∥f∥1.

The case k = 1 is called the Khintchine inequality.

Proof. The trick is the following:

∥f∥22 = E[f(x) · f(x)] = E
[
|f(x)|4/3 · |f(x)|2/3

]
.

Now applying Hölder’s inequality with r = 3 and s = 3/2 and Bonami’s lemma, we get

∥f∥22 ≤ E
[
|f(x)|4

]1/3 ·E[|f(x)|]2/3 ≤ 9k ·E
[
f(x)2

]2/3 ·E[|f(x)|]2/3 = 9k · ∥f∥4/32 · ∥f∥2/31 .

The claim then follows from dividing both sides by ∥f∥4/32 .

15.1.1 Hypercontractivity

Recall in Definition 5.8, we defined y ∼ Nρ(x) as the random string obtained by independently
setting each bit yi to uniform with probability 1− ρ and sgn(ρ)xi otherwise. We also define the
noise operator Tρ on f (Definition 5.14) as

Tρf(x) := E
y∼Nρ(x)

[f(y)] =
∑
S⊆[n]

f̂(S) E
y∼Nρ(x)

[
χS(y)

]
=
∑
S⊆[n]

f̂(S)ρ|S|χS(x).

The noise operator Tρ is contractive as it does not increase the norm of a function.

Fact 15.6. For every ρ ∈ [−1, 1], we have ∥Tρf∥2 ≤ ∥f∥2 for every f : {−1, 1}n → R.

The hypercontractivity theorem says that not only Tρ is contractive, but it is hypercontractive
in the following sense.

Theorem 15.7 ((2,4)-Hypercontractivity theorem). ∥T1
√
3f∥4 ≤ ∥f∥2 for every f : {−1, 1}n → R.

49

We will not prove this theorem, as this can be proved in the same inductive manner as proving
the Bonami lemma. The intuition is that the dampening factor of ρ|S| introduced by the noise in Tρ

cancels the factor 9k in the Bonami lemma. For example, if we let f=k(x) :=
∑

|S|=k f̂(S)χS(x) be
the degree-k homogenous part of f , then

E
[(

T 1√
3
f(x)

)4]
= E

∑
|S|=k

f̂(S)

(
1√
3

)k

χS(x)

4
=

(
1√
3

)4k

E

(∑
|S|=k

f̂(S)χS(x)

)4

= 9−k ·E[f(x)4].

By Bonami’s lemma, this is at most E[f(x)2]2. (Note that we cannot simply sum over k to prove
the theorem.)

We now state the general Hypercontractivity without proof.

Theorem 15.8 ((p, q)-Hypercontractivity theorem). For every f : {−1, 1}n → R, 1 ≤ p ≤ q and

0 ≤ ρ ≤
√

p−1
q−1 , we have ∥Tρf∥q ≤ ∥f∥p.

Setting to p = 2, we have ∥T 1√
p−1

f∥q ≤ ∥f∥2 for q ≥ 2. Likewise, setting q = 2, we have

∥T√
p−1f∥2 ≤ ∥f∥p for every p ≤ 2.

15.1.2 Small-set expansion of the noisy hypercube

Let G = (V,E,w) be a weighted (undirected) graph, where for every x ∈ V , the weights {w(x, y)}y∈V
on its adjacent edges form a distribution on V . We define the expansion of a subset S ⊆ V in G as

ΦG(S) := Pr
x∼S
y∼wx

[y ̸∈ S]. 7

In words, we draw a uniformly random vertex in S and ask what is the probability of a random
neighbor of x (sampled according the weight function w) leaving S. We also define the expansion of
G as

Φ(G) := min
S:|S|≤|V |/2

ΦG(S).

(Note that without the condition |S| ≤ |V |/2 we can take S = V and this quantity is always 0.)
We say that G is an c-expander if Φ(G) ≥ c. It is not hard to see that Φ(G) is at most a constant
and cannot be arbitrarily close to 1. (To see this, take the union of a subset S ⊆ V of size |V |/4
and some appropriately chosen size-(|V |/4) subset of the neighbor of S.) We now look at a weaker
notion of expansion in which we only require expansion over small subsets of V .

Definition 15.9 (Small-set expander). G is an (δ, ϵ)-small-set expander if ΦG(S) ≥ 1− ϵ for every
subset S of size at most δn.

Let (V,E) be the Boolean hypercube {−1, 1}n. We will show that for ρ ∈ [−1, 1], the ρ-noisy
hypercube G = (V,E,wρ), where the weight wρ(x, y) is defined by

wρ(x, y) := Pr
y∼Nρ(x)

[y = y],

7This is usually called the conductance of the cut (S, S) in G

50

is a small-set expander. For intuition, we can think of y ∼ Nρ(x) as taking a random walk of length

roughly (1−ρ)n
2 starting from x in {−1, 1}n, as (1−ρ)n

2 is the expected number of bits flipped in x.

Claim 15.10. For ρ = 1/
√
3, the ρ-noisy hypercube is a (δ, δ1/4)-small-set expander.

Proof. Fix a subset S ⊆ {−1, 1}n of size δ2n. Let f : {−1, 1}n → {0, 1} be the indicator f(x) :=
1(x ∈ S). We have E[f(x)] = δ. We will relate the escape probability to the stability of f . Recall
from Definition 5.10 that the stability of f is defined as

Stabρ[f] = E
x∼{−1,1}n,y∼Nρ(x)

[f(x)f(y)] = E
x∼{−1,1}n

[
f(x)· E

y∼Nρ(x)
[f(y)]

]
= E

x∼{−1,1}n

[
f(x)·Tρf(x)

]
.

We will bound above the inner product on the right hand side using Hypercontractivity. Observe

that E[f(x)q] = E[f(x)] for any q > 0 and thus ∥f∥q = E[f(x)]
1
q . By Hölder’s inequality and

Hypercontractivity,

E[f(x) · Tρ(x)] ≤ ∥f∥4/3 · ∥Tρf∥4 ≤ E[f(x)]3/4 ·E[f(x)]1/2 = E[f(x)]5/4.

Now,

Pr
x∼S

y∼Nρ(x)

[y ∈ S] =
1

E[f(x)]
Stabρ[f] ≤

1

E[f(x)]
·E[f(x)]5/4 = E[f(x)]1/4.

So ΦG(S) ≥ 1−E[f(x)]1/4 = 1− δ1/4.

51

CS229BR: Analysis of Boolean Functions Lecture 16
Harvard University Nov 01 2022

16.1 The Fourier spectrum of small sets

Let S ⊆ {−1, 1}n be a subset of size δ2n. We will study the Fourier spectrum of the indicator
function f(x) := 1(x ∈ S).

As a warm-up let us give a lower bound on its degree. Recall that in Claim 6.5 we showed that
for every g : {−1, 1}n → R of degree at most d, we must have Pr[g(x) ̸= 0] ≥ 2−d. Applying this
claim to f shows that f must have degree at least Ω(log(1/δ)).

We now strengthen this observation by showing that most of the Fourier weight of f is on subsets
of size at least some Ω(log(1/δ)).

Claim 16.1. Let f : {−1, 1}n → {−1, 0, 1} with Pr[f(x) ̸= 0] ≤ δ. Then W≤d[f] ≤ 3d · δ3/2.

Letting d = log(1/δ)/4 we can conclude that

W≤log(1/δ)/4[f] ≤ 3log(1/δ)/4 · δ3/2 = δ(log 3)/4 · δ3/2 ≪ δ = E[f(x)2] =
∑
S⊆[n]

f̂(S)2.

Therefore, most of the Fourier weight is on subsets S of size at least Ω(log(1/δ)).

Proof of Claim 16.1. Let f≤d(x) :=
∑

|S|≤d f̂(S)χS(x) be the “low-degree part” of f . The key
observation is that by Plancherel’s identity we have

W≤d[f] = E
[
f≤d(x) · f≤d(x)

]
= E

[
f(x) · f≤d(x)

]
.

Now we apply Hölder inequality with r = 4/3 and s = 4, and then the Bonami lemma (to f≤d) to
conclude that

E
[
f(x) · f≤d(x)

]
≤ ∥f∥4/3 · ∥f≤d∥4 ≤ δ3/4 ·

√
3
d∥f≤d∥2 =

√
3
d · δ3/4 ·W≤d[f]1/2.

So W≤d[f] ≤ 3d · δ3/2.

We now show that the exponent 3/2 of δ can be improved when d is small.

Lemma 16.2 (Level-k inequality). Let f : {−1, 1}n → {−1, 0, 1} with Pr[f(x) ̸= 0] = E[|f(x)|] ≤ δ.
Then W≤k[f] ≤ δ2 · (100 log(2/δ))k.

Note that the bounds in Claim 16.1 and Lemma 16.2 are incomparable. If we set k = c log(2/δ)
for some c > 0, then using Lemma 16.2, we only get an upper bound of W≤c log(2/δ)[f] ≤
δ2 (c log(2/δ))c log(2/δ) = δ2(1/δ)Θ(log log(1/δ)) ̸≪ δ, and thus we cannot even conclude that f has
degree at least Θ(log(1/δ)).

Indeed, Lemma 16.2 is not tight and can be improved to

W≤k[f] ≤ δ2 ·
(
100 log(2/δ1/k)

)k
.

By considering the AND function one can verify that this is close to tight.
We will only prove Lemma 16.2. One can prove this using a similar argument to the proof of

Claim 16.1 using the q-norm version of Bonami’s lemma (Lemma 15.1), but we will give a different
proof below to demonstrate a use of tail bound for low-degree polynomials (Theorem 15.4).

52

Proof of Lemma 16.2. As in the previous proof, let f≤k(x) :=
∑

|S|≤k f̂(S)χS(x) be the low-degree

part of f and write W≤k[f] = E[f(x) · f≤k(x)]. Note that f≤k(x) is not bounded, and so we will
decompose this expectation into two parts depending on the magnitude of f≤k(x), and use the tail
bound for low-degree polynomials to argue that |f≤k(x)| cannot be too large for most x ∈ {−1, 1}n.

To proceed, let E be the event “f≤k(x) ≤ T∥f≤k∥2” for some T that will be chosen later. We
have

E
[
f(x) · f≤k(x)

]
= E

[
|f(x)| · |f≤k(x)| · 1(E)

]
+E

[
|f(x)| · |f≤k(x)| · 1(E)

]
.

The first term can be easily bounded by T∥f≤k∥2 ·E[|f(x)|] ≤ δ · T · ∥f≤k∥2. To bound the second
term, we apply Cauchy–Schwarz and then Theorem 15.4 to obtain

E
[
|f(x)| · |f≤k(x)| · 1(E)

]
≤ E

[
|f(x)|2 · |f≤k(x)|2

]1/2
·Pr[E]1/2

]
= E

[
|f≤k(x)|2

]1/2
· Pr
x∼{−1,1}n

[
f≤k(x) > T∥f≤k∥2

]1/2
≤ ∥f≤k∥2 · 4 · e−

T2/k

2 (Theorem 15.4).

Hence, we have

W≤k[f] ≤ ∥f≤k∥2 ·
(
δ · T + 4 · e−

T2/k

2

)
= W≤k[f]1/2 ·

(
δ · T + 4 · e−

T2/k

2

)
.

Choosing T = (50 log(1/δ))k/2 completes the proof.

16.2 FKN theorem

We now prove the Friedgut–Kalai–Naor (FKN) theorem, which is a robust version of the following
claim.

Claim 16.3. Suppose f : {−1, 1}n → {−1, 1} satisfies W=1[f] =
∑

|S|=1 f̂(S)
2 = 1. Then f must

be a dictator (i.e. χ{i} for some i ∈ [n]) or an anti-dictator (i.e. −χ{i} for some i ∈ [n]).

This can be proved by observing that f has degree 1 and therefore from Homework 1 we know
that its coefficients must be a multiple of 1. Here we give a more direct proof.

Proof. First of all note that by Parseval, {f̂({i}) : i ∈ [n]} are the only nonzero coefficients.
Let ai := f̂({i}) and we have f(x) =

∑
i aixi. By choosing xi = sgn(ai) ∈ {−1, 1} we have∑n

i=1|ai| = f(x) = 1. Now by Parseval we have

1 =
n∑

i=1

a2i ≤ max
i

|ai|
∑
i

|ai| = max
i

|ai|.

So we must have |ai| = 1 for some i ∈ [n] and the rest of the aj : j ̸= i must be 0.

If instead of W=1[f] = 1 we have W≤1[f] = 1, we claim that f is a dictator, an anti-dictator, or
a constant, by reducing it to the former case using the following trick.

Consider f ′ : {−1, 1}n+1 → {−1, 1} defined by f ′(x0, x1, . . . , xn) = f̂(∅)x0 + f(x1, . . . , xn).
Observe that f ′(1, x1, . . . , xn) = f(x1, . . . , xn) and f ′(−1,−x1, . . . ,−xn) = −f(x1, . . . , xn) and thus
the range of f ′ is indeed {−1, 1}. Now observe that W=1[f ′] = W≤1[f].

53

Theorem 16.4. Suppose f : {−1, 1}n → {−1, 1} satisfies W≤1[f] ≥ 1− δ. Then f is O(δ)-close to
a dictator, an anti-dictator, or a constant.

By setting δ = 0, we recover Claim 16.3.

Proof. Without loss of generality, we can assume W=1[f] = 1 − δ using the trick above. Let
ℓ(x) := f=1(x) =

∑n
i=1 f̂({i})xi be the degree-1 part of f . Most of our effort will go into showing

that Var[ℓ(x)2] = O(δ). Let us first see how it implies the theorem.
We first look at Var[ℓ2] in terms of the Fourier coefficients of ℓ. Let us first look at the Fourier

expansion of ℓ(x)2. We have

ℓ(x)2 =
∑
i,j

f̂{i}f̂{j}xixj =
∑
i ̸=j

f̂{i}f̂{j}xixj +
n∑

i=1

f̂{i}2.

As Var[g] =
∑

S ̸=∅ ĝ(S)2 for any g : {−1, 1}n → R,

Var[ℓ2] =
∑
i ̸=j

f̂{i}2f̂{j}2

=
(n∑

i=1

f̂{i}2
)2

−
n∑

i=1

f̂{i}4

= E
[
ℓ(x)2

]2 −∑
i

f̂{i}4

= (1− δ)2 −
∑
i

f̂{i}4.

Hence

max
i∈[n]

f̂{i}2
∑
i∈[n]

f̂{i}2 ≥
∑
i

f̂{i}4 ≥ (1− δ)2 −Var[ℓ2] ≥ (1− δ)2 −O(δ) ≥ 1−O(δ),

and so

max
i

|f̂{i}| ≥
(
1−O(δ)

1− δ

)1/2

≥ 1−O(δ).

It remains to show that Var[ℓ2] ≤ O(δ).

16.2.1 Bounding the variance of ℓ2

First observe that we have

E[ℓ(x)2] = E[f(x)ℓ(x)] = 1− δ and E[(f(x)− ℓ(x))2] = δ, (8)

Using the definition of variance, we have

Var[ℓ2] = E
[∣∣ℓ2 −E[ℓ2]

∣∣2] = E
[∣∣ℓ2 − (1− δ)

∣∣2].
The trick is a clever use of the fact that f(x)2 = 1. By Khintchine’s inequality (Claim 15.5),

E
[∣∣ℓ2 − (1− δ)

∣∣2] ≤ 9 ·E
[∣∣ℓ2 − (1− δ)f2

∣∣]2
= 9E

[
(ℓ−

√
1− δf) · (ℓ+

√
1− δf)

]
≤ 9E

[
(ℓ−

√
1− δf)2

]1/2 ·E[(ℓ+√
1− δf)2

]1/2
.

54

It follows from Equation (8) that

E
[
(ℓ−

√
1− δf)2

]1/2 ≤ O(δ) and E
[
(ℓ+

√
1− δf)2

]1/2 ≤ 4.

So Var[ℓ2] ≤ E[|ℓ2 − (1− δ)|2] ≤ O(δ).

55

CS229BR: Analysis of Boolean Functions Lecture 17
Harvard University Nov 03 2022

17.1 KKL theorem

We will prove the Kahn–Kalai–Linial (KKL) theorem.

Theorem 17.1. Every function f : {−1, 1}n → {−1, 1} must contain an influential coordinate
i ∈ [n] such that Infi[f] ≥ Var[f] · Ω((log n)/n).

Before we do that, it would be useful to recall the key ingredients that go into proving Theorem 6.4,
that functions of degree k are (k · 2k−1)-juntas. The first ingredient is that I[f] ≤ deg(f) = k
because I[f] = ES∼Sf [|S|] is the “average degree” of f . The second ingredient is to show that for

each coordinate i ∈ [n], it must be the case that Infi[f] = 0 or Infi[f] ≥ 21−k. This uses the fact
that the derivative Dif has degree k − 1 and Pr[g(x) ̸= 0] ≥ 21−k for nonzero g : {−1, 1}n → R of
degree at most k.

So far we have established the robust analogue of these two ingredients by arguing about the
concentration of the Fourier coefficients of f . We have seen in Proposition 5.6 that every function

is ϵ-concentrated on degree at most I[f]/ϵ, i.e., W>
I[f]
ϵ [f] ≤ ϵ. In the last lecture, we showed

in Claim 16.1 that “small sets” have their Fourier weight concentrated on the high-degree part,
i.e. W≤ 1

4
log(1/E[|g|]) ≪ E[|g|] for functions g : {−1, 1}n → {−1, 0, 1}. We can argue about the

second ingredient above using this language: Letting g(x) := Dif(x) ∈ {−1, 0, 1}, we see that if
Infi[f] = E[|Dif(x)|] is small, then Dif must have most of its Fourier weight on high degree, which
contradicts the fact that deg(f) is small.

We will prove Theorem 17.1 using a similar idea. First of all, note that the bound in the theorem
is only interesting when I[f] ≤ c ·Var[f] · log n for any sufficiently small constant c; for otherwise
the theorem follows by simply averaging over the n coordinates. In other words, most of the Fourier
weight of f is concentrated on degree at most O(log n). Now assume towards a contradiction that
every individual influence is Infi[f] = E[|Dif(x)|] ≤ O(log n)/n. This implies that there is very
little Fourier mass on degree ≤ 1

4 log(1/E[|Dif(x)|]) ≤ Θ(log n) in the Fourier spectrum of Dif .
But both

∑
iDif and f have similar Fourier spectrum in the low-degree part, and so we get a

contradiction.

We now give the formal proof.

Proof of Theorem 17.1. Without loss of generality, assume I[f] ≤ c ·Var[f] · log n for a sufficiently
small constant c > 0. By Proposition 5.6 we know that f is (Var[f]/10)-concentrated on degree
10c log n, that is, W>10c logn[f] ≤ Var[f]/10. Assume towards a contradiction that Infi[f] =
E[|Dif(x)|] ≤ c ·Var[f] · (log n)/n ≤ 1/n40c for every i ∈ [n]. Since log(1

E[|Dif(x)|]) ≥ 40c log n, by
Claim 16.1 we have

W≤10c logn[Dif] ≤
(
Var[f] · log n

n

)1.01

,

56

and so ∑
0<|S|≤10c logn

f̂(S)2 ≤
∑

|S|≤10c logn

|S| · f̂(S)2

=

n∑
i=1

∑
S∋i

|S|≤10c logn

f̂(S)2 (9)

=
n∑

i=1

W≤10c logn[Dif]

≤ n ·
(
Var[f] · log n

n

)1.01

≤ Var[f]/10.

Putting the two bounds together, we have

Var[f] = W>0[f] ≤
∑

0<|S|≤10c logn

f̂(S)2 +W>10c logn[f] ≤ Var[f]/10 +Var[f]/10 ≤ Var[f]/2,

a contradiction.

Recall that the Tribesw,2w ln 2 function is almost-balanced and satisfies Infi[f] ≥ Θ((log n)/n)
every i ∈ [n]. The KKL theorem can be slightly improved as follows.

Theorem 17.2 (Talagrand). There is a universal constant C such that every function f : {−1, 1}n →
{−1, 1} satisfies

C

n∑
i=1

Infi[f]

log(1/Infi[f])
≥ Var[f].

To see that Theorem 17.2 implies Theorem 17.1, note that

C
1

log(1/maxi Infi[f])
· I[f] = C

n∑
i=1

Infi[f]

log(1/maxi Infi[f])
≥ C

n∑
i=1

Infi[f]

log(1/Infi[f])
≥ Var[f].

So after rearranging we have maxi Infi[f] ≥ e
−C

I[f]
Var[f] . Now, if I[f] ≥ (1/2C)Var[f] · log n, then

maxi Infi[f] ≥ 1√
n
≥ Var[f] · (log n)/n. Otherwise, the KKL theorem follows from averaging.

Proof of Theorem 17.2. The improvement comes from the following equality.

Var[f] = W>0[f] =
n∑

i=1

∑
S∋i

1

|S|
· f̂(S)2.

Now, let gi(x) :=
∑

S∋i
1√
|S|

f̂(S)χS(x), and di be some threshold on the degree that will be

determined later in the proof. We have ∥gi∥22 = W≤di [gi] +W>di [gi]. We can bound the first term
by

W≤di [gi] =
∑
S∋i

|S|≤di

1

|S|
f̂(S)2 ≤

∑
S∋i

|S|≤di

f̂(S)2 = W≤di [Dif],

57

and the second term by

W>di [gi] ≤
∑
S∋i

|S|>di

1

|S|
f̂(S)2 ≤ 1

di

∑
S∋i

f̂(S)2 ≤ 1

di
Infi[f]

Choosing di = log(1/Infi[f])/4, we have

Var[f] ≤
n∑

i=1

∥gi∥22

≤
n∑

i=1

(
W≤di [Dif] +

1

di
Infi[f]

)

≤
n∑

i=1

(
E[|Dif(x)|]1.01 +

Infi[f]

log(4/Infi[f])

)

=

n∑
i=1

(
Infi[f]

1.01 +
Infi[f]

log(4/Infi[f])

)

= C

n∑
i=1

Infi[f]

log(1/Infi[f])
.

58

CS229BR: Analysis of Boolean Functions Lecture 18
Harvard University Nov 08 2022

18.1 Friedgut Junta Theorem

Our last application of Hypercontractivity is the Friedgut Junta Theorem.

Theorem 18.1. Every Boolean function f : {−1, 1}n → {−1, 1} is ϵ-close to a 2O(I[f])/ϵ)-junta.

Recall that the Nisan–Szegedy theorem (Theorem 6.4) says that a Boolean function f of degree
k is a (k · 2k−1)-junta that depends on the coordinates in J = {i ∈ [n] : Infi[f] ≥ 21−k}. Thus we
can write f as

f(x) :=
∑
S⊆J
|S|≤k

f̂(S)χS(x).

We are going to construct the junta using a similar strategy. Note that f is ϵ-concentrated
on degree at most I[f]/ϵ, so in this case the set J would collect the coordinates whose individual
influence is at least 2−I[f]/10ϵ, and our junta is defined by removing all the coefficients from f except
the low-degree coefficients f̂(S) with respect to subsets S that completely lie in J . To show that
the junta is close to f , we look at the Fourier weight contributed by the removed coefficients. Note
that the coefficients that are removed are the ones which either have high degree, in which case
they contribute ϵ weight, or contain a non-influential coordinate i ̸∈ J ; in this case we can bound
their weight using the fact that Infi[f] ≤ 2−10I[f]/ϵ and Claim 16.1.

Proof of Theorem 18.1. Let J := {i ∈ [n] : Infi[f] ≥ 2−10I[f]/ϵ}. Define G : {−1, 1}n → R as

G(x) :=
∑
S⊆J

|S|≤I[f]/ϵ

f̂(S)χS(x).

Note that G may not be a Boolean function, but as taking sign does not increase the number of
coordinates it depends on, we can apply the same trick as in Linial–Mansour–Nisan, by defining
g : {−1, 1}n → {−1, 1} by g(x) := sgn(G(x)).

Now, as {2, 0} ∋ |f(x)− g(x)| ≤ 2|G(x)− f(x)|, we have ∥f − g∥22 ≤ 4∥f −G∥22. Moreover,

E[(G(x)− f(x))2] =
∑
S⊆[n]

(Ĝ(S)− f̂(S))2

=
∑

|S|>I[f]/ϵ

f̂(S)2 +
∑

|S|>I[f]/ϵ

(Ĝ(S)− f̂(S))2 ≤ ϵ+
∑

|S|>I[f]/ϵ

(Ĝ(S)− f̂(S))2.

For the second term we have∑
|S|≤I[f]/ϵ

(Ĝ(S)− f̂(S))2 ≤
∑
i ̸∈J

∑
S∋i

|S|≤I[f]/ϵ

f̂(S)2 ≤
∑
i ̸∈J

W≤I[f]/ϵ[Dif] ≤
∑
i ̸∈J

Infi[f]
1.01

≤ 2−Ω(I[f]/ϵ) ·
∑
i/∈J

Infi[f] ≤ I[f] · 2−Ω(I[f])/ϵ) ≤ ϵ.

Putting the two bounds together we have ∥f − g∥22 ≤ 8ϵ.

59

18.2 Pseudorandom generators

The final topic of this course is about pseudorandomness. We will show how to use Fourier analysis
to analyze pseudorandom generators for space-bounded computation.

Definition 18.2. A distribution D on {0, 1}n fools a family of functions F ⊆ {f : {0, 1}n → R}
with error ϵ if for every f ∈ F , we have∣∣∣ E

x∼D
[f(x)]− E

x∼{0,1}n
[f(x) = 1]

∣∣∣ ≤ ϵ.

A pseudorandom generator (PRG) is a sparse distribution that fools some family F .

Definition 18.3. A function G : {0, 1}s → {0, 1}n is a pseudorandom generator (PRG) for F with
error ϵ if G(x) : x ∼ {0, 1}s fools F with error ϵ. We call s the seed length of G.

It is easy to construct a PRG with seed length n or error 1. In fact, there always exists a PRG
with seed length s = O(log log(|F|) + log(1/ϵ)).

Claim 18.4. For every F ⊆ {f : {0, 1}n → {0, 1}}, there exists a PRG for F with error ϵ and seed
length s = log log(|F|) + 2 log(1/ϵ) +O(1).

Proof. Given a family F , let s be a parameter to be chosen later. We use the probabilistic method
to show that a random function G : {0, 1}s → {0, 1}n is a good PRG. For a fixed f ∈ F we have

E
x∼{0,1}n

[f(x)] = 2−s
∑

u∈{0,1}s
E
G

[
f(G(u))

]
= E

G

[
2−s

∑
u∈{0,1}s

[
f(G(u))

]]
.

As G(u) : u ∈ {0, 1}n are independent, by the Chernoff bound, we have

Pr
G

[∣∣∣2−s
∑

u∈{0,1}s
f(G(u))− E

x∈{0,1}n
[f(x)]

∣∣∣ > ϵ

]
≤ 2−Ω(2sϵ2).

By a union bound over all f ∈ F , the probability that G fails to fool f ∈ F is at most |F| · 2−Ω(2sϵ2).
Choosing s = log log(|F|) + 2 log(1/ϵ) +O(1), this is strictly less than 1, and so some G : {0, 1}s →
{0, 1}n must fool F .

Given that G always exists, the next question to ask is whether we can construct one explicitly,
that is, whether we can find G efficiently, say in time polynomial in n. From now on when we talk
about PRGs we assume the need to be explicit.

We now introduce one of the most fundamental tools in derandomization and algorithm design.

Definition 18.5 (k-wise independent distributions). A distribution D on {0, 1}n is k-wise indepen-
dent if D is uniform on any k of the n coordinates. Equivalently, D fools all k-juntas with 0 error,
that is, Ex∼D[f(x)] = Prx∼{0,1}n [f(x)] for every f : {0, 1}n → {0, 1} that depends only at most k
coordinates.

k-wise independent distributions are also known as universal hash functions. Using Fourier
analysis, it is straightforward to see that an equivalent definition for a distribution to be k-wise
independent is that it fools all parity functions of size k. We now give a explicit construction of
k-wise independent distribution.

60

Claim 18.6. There exists a k-wise independent distribution on {0, 1}n that can be efficiently sampled
using a seed of length O(k log n).

Proof. We will instead show how to use k uniformly random elements in the field F2logn to generate a
k-wise independent distribution D on Fn

2logn , i.e. D is uniform on every k coordinates of Fn
2logn , then

taking the first bit of the element in the n coordinates gives us a k-wise independent distribution
on Fn

2 . In more detail, the k random elements a0, . . . ,ak−1 ∼ F2logn are used to specify a random
degree-(k − 1) polynomial pa0,...,ak−1

: Fn
2logn → F2logn defined by

pa0,...,ak−1
(x) :=

k−1∑
i=0

aix
i,

and the n coordinates of the distribution D are obtained by evaluating pa0,...,ak−1
on the n elements

in F2logn . To see that D is k-wise independent, we use the fact that a degree-(k − 1) polynomial
is uniquely determined by its evaluation on any k distinct points. One way to see this is to use a
similar argument that we saw in HW3 Q2. Given k coordinates (yi1 , . . . yik) of D, to determine
a0, . . . ,ak−1 we can form the linear system

1 xi1 · · · xk−1
i1

1 xi2 · · · xk−1
i2

... · · ·
1 xik · · · xk−1

ik

a0
a1
...

ak−1

 =

yi1
yi2
...
yik

 .

As the matrix is a k× k Vandermonde matrix, it has full rank and the system has a unique solution.
So the probability that (a0, . . . ,ak−1) is equal to this solution is exactly n−k.

61

CS229BR: Analysis of Boolean Functions Lecture 18
Harvard University Nov 08 2022

19.1 Bounded independence plus noise

In this lecture we study the power of adding noise to k-wise independence. We will show that it fools
a family of tests called product tests, and we will briefly mention its connection to derandomizing
space-bounded computation.

Definition 19.1 (Product tests). A function f : {0, 1}n=m·d → [−1, 1] is a (m, d)-product if it can
be written as

f(x1, x2, . . . , xm) :=
m∏
i=1

fi(xi),

where each fi : {0, 1}d → [−1, 1] is an arbitrary Boolean function.

Let F be the class of (m, d)-products. It is not hard to see that F is not fooled by even
(n − 1)-independence, because if we let fi(xi) = χ[d](xi) then f(x) = χ[n](x) is simply the parity

function on n bits. Moreover, it is easy to check that the distribution (x1, . . . ,xn−1,
∑n−1

i=1 xi), where
x1, . . . ,xn−1 are uniform bits, is (n−1)-independent, and we have that χ[n](x1, . . . ,xn−1,

∑
i xi) = 1

always, whereas E[χ[n](x)] = 0.
We now show that adding noise to a k-wise independent distribution fools product tests, where

the noise is the distribution Nρ(x) we saw earlier in Definition 5.8, and for ρ > 0 this is

Nρ(x)i :=

{
uniform with probability 1− ρ

xi with probability ρ.

We will focus on ρ = 1/2, and will instead write N1/2(x) as x+N , where N = N1/2(⃗0). For notational
simplicity we use E[f(D)] to denote Ex∼D[f(x)] and Un to denote the uniform distribution over
{0, 1}n (we omit the subscript n when it is clear). We will prove the following theorem.

Theorem 19.2 (Bounded independence plus noise fools products). Let D be a 2(d+ k − 1)-wise
independent distribution on {0, 1}n. Then D+N fools any (m, d)-product f with error m · 2−k, that
is ∣∣∣E[f(D +N)]−E[f(U)]

∣∣∣ ≤ m · 2−k.

Setting k = O(d+ log(m/ϵ)), we get distribution that fools (m, d)-products with error ϵ.
The intuition behind proving this theorem is to use D to fool the low-degree part of f , and N

to fool the high-degree part of f . Specifically, we know that if f : {0, 1}n → R is a degree-k function
then

E[f(D)] =
∑

α:|α|≤k

f̂(α)E[χα(D)] =
∑

α:|α|≤k

f̂(α)E[χα(U)] = f̂(∅) = E[f(U)].

On the other hand, we have E[χα(N)] = 2−|α|, which is small when |α| is large.
Of course, D +N cannot fool every function, so we have to rely on the fact the f is a product.

Indeed, we have the following decomposition lemma.

Lemma 19.3. Every (m, d)-product f : {0, 1}n → [−1, 1] can be written as

f(x1, . . . , xn) = f≤k−1(x1, . . . , xn) +

m∑
i=1

hi(x1, . . . , xi)f>i(xi+1, . . . , xn),

where

62

1. f≤k−1(x) :=
∑

|α|≤k f̂(α)χα(x),

2. f>i : {0, 1}(n−i)·d → [−1, 1] is defined as f>i(xi+1, . . . , xn) =
∏n

j=i+1 f(xj), and

3. hi : {0, 1}i·d → R satisfies E[hi(Ui·d)
2] ≤ 1 and if ĥi(α) ̸= 0 then |α| ∈ [k, k + d− 1].

We first show how to prove Theorem 19.2 using Lemma 19.3.

Proof of Theorem 19.2. First, because N +D is also 2(k + d− 1)-wise independence, we have

E[f≤k−1(D +N)] = f̂(∅) = E[f(U)].

It remains to show that |E[(hif>i)(D +N)]| ≤ 2−k for each i ∈ [n]. We have∣∣∣ E
D,N

[hi(D +N) · f>i(D +N)]
∣∣∣

≤ E
D

[∣∣E
N
[hi(D +N)]

∣∣ · ∣∣E
N
[f>i(D +N)]

∣∣]
≤ E

D

[∣∣E
N
[hi(D +N)]

∣∣] (|f>i(x)| ≤ 1)

≤ E
D

[
E
N
[hi(D +N)]2

]1/2
(Cauchy–Schwarz)

≤ E
U

[
E
N
[hi(U +N)]2

]1/2
(E
N
[hi(x+N)]2 has degree ≤ 2(k + d− 1))

≤

 ∑
d≤|α|≤d+k−1

2−|α| · ĥi(α)2
1/2

(ĥi(α) ̸= 0 =⇒ |α| ≥ d)

≤ 2−k ·E[h(U)2]1/2

≤ 2−k (E[h(U)2] ≤ 1).

We now prove the decomposition lemma (Lemma 19.3).

Proof of Lemma 19.3. We write

f(x1, . . . , xn) = f≤k−1(x1, . . . , xn) +
m∑
i=1

hi(x1, . . . , xi)f>i(xi+1, . . . , xn), (10)

where hi : {0, 1}i·d → R is defined as

hi(x1, . . . , xi) =
∑

(α1,...,αi)∈{0,1}i·d
the k-th 1 lies in αi

f̂≤i(α)χα(x1, . . . , xi).

First it should be clear that if f̂i(α) ̸= 0 then |α| ≥ k. Next, note that if the k-th 1 lies in the last
block αi of (α1, . . . , αi), then |α| ≤ k + d− 1 as α can have at most d− 1 many 1s after the k-th 1.
By Parseval’s we have E[hi(U)2] ≤ E[f≤i(U)2] ≤ 1.

It remains to argue that Equation (10) is a valid decomposition. For each α, we will show
that f̂(α) appears uniquely in the decomposition. Here we use the property of products, where
f̂(α1, . . . , αm) = f̂1(α1) · · · f̂m(αm). When |α| ≤ k − 1, clearly f̂(α) appears as a coefficient in

f≤k−1. Suppose |α| ≥ k. Let αi be the block that contains the k-th 1. It follows that f̂≤i(α1, . . . , αi)

appears in hi, and f̂>i(αi+1, . . . , αm) clearly appears in f>i. So f̂(α) appears in hif>i.

63

19.1.1 Connection to space-bounded computation

A (non-uniform) streaming algorithm that uses s bits of space can be modeled by a read-once
branching program of width w = 2s. Its computation can be captured using a layered graph with
n+1 layers, each consisting of w vertices representing the 2s possible memory states of the algorithm.
The program reads the n input bits one at a time and updates its current state in its current layer
to some state to the next layer depending on the value of the bit. In the final layer, the states are
partitioned into accept and reject states.

Definition 19.4 (Read-once branching programs). A read-once branching program B of length n
and width w computes a function B : {−1, 1}n → {0, 1}. It starts at a fixed start state v1 ∈ [w].
Then for t = 1, . . . , n, it reads the next input bit xt and updates its state according to a transition
function Bt : [w] × {−1, 1} → [w] by taking vt+1 := Bt(vt, xt). Note that the transition function
Bt can differ at each time step. The program has a fixed set of accept states Vacc ⊆ [w], and
B(x) = 1(vn+1 ∈ Vacc).

We can model the transition between two adjacent layers by a 1-bit matrix-valued function
Bi : {0, 1} → {0, 1}w×w, where

Bi(xi)u,v =

{
1 if the program moves from state u to state v on xi

0 otherwise.

Moreover, replacing the range [−1, 1] in products with w × w Boolean matrices {0, 1}w×w, we see
that a (n, 1)-matrix-product captures a read-once branching programs of width w. Indeed, we can
extend Theorem 19.2 to matrix products using essentially the same proof, by generalizing some
notions we saw in Fourier analysis to matrix-valued functions,

As in the case for scalar-valued functions, every matrix-valued Boolean function B : {0, 1}n →
{0, 1}w×w has a Fourier expansion

B(x) =
∑
S⊆[n]

f̂(S)χS(x),

where B̂(S) ∈ Rw×w can be computed by

B̂(S) = E
x∼{0,1}n

[
B(x)χS(x)

]
.

To introduce a matrix analogue of Parseval’s identity, we need to define the Frobenius inner-
product.

Definition 19.5 (Frobenius inner-product). Given two matrices N,M ∈ Rw×w, we define the
Frobenius inner-product of N and M , denoted ⟨N,M⟩Fr by

⟨N,M⟩Fr := tr(NTM) =
∑

i,j∈[w]

Ni,jMi,j .

The Frobenius norm of a matrix N ∈ Rw×w, denoted by ∥N∥Fr, is

∥N∥Fr = ⟨N,N⟩1/2 =
(∑

i,j

N2
i,j

)1/2
.

64

Proposition 19.6 (Parseval’s identity). Ex

[
∥B(x)∥2Fr

]
=
∑

S⊆[n]∥B̂(S)∥2Fr for every B : {0, 1}n →
Rw×w.

Proof. We have

E
x

[
∥B(x)∥2Fr

]
= E

x

[〈∑
S⊆[n]

B̂(S)χS(x),
∑
T⊆[n]

B̂(T)χT (x)
〉]

= E
x

[∑
S,T⊆[n]

〈
B̂(S), B̂(T)

〉
χS(x)χT (x)

]

=
∑
S⊆[n]

〈
B̂(S), B̂(S)

〉
=
∑
S⊆[n]

∥B̂(S)∥2Fr.

We summarize the discussion by stating the matrix analogue of Theorem 19.2.

Corollary 19.7 (Bounded independence plus noise fools matrix-valued products). Let D be a
2k-wise independent distribution on {0, 1}n. Then D +N fools any (m, 1)-matrix-valued product B,
where Ex[∥Bi(x)∥2Fr] ≤ w for every i ∈ [n], with error w ·m · 2−k, that is∣∣∣E[f(D +N)]−E[f(U)]

∣∣∣ ≤ w ·m · 2−k.

65

CS229BR: Analysis of Boolean Functions Lecture 20
Harvard University Nov 15 2022

20.1 Polarizing random walk

In the last lecture, we showed that a noisy O(d+ log(m/ϵ))-wise independent distribution D +N
fools (m, d)-products with error ϵ. In general sampling the distribution N is costly and hence it
is not clear how to construct a PRG from this theorem. In this lecture, we will see one way of
converting the noisy k-wise independent distribution to a PRG.

One alternative way of stating Theorem 19.2 is that k-wise independence fools smoothed products.
Recall that D+N is the same as N1/2(D), and so we can write f(D+N) as f(N1/2(D)). Averaging
over noise, we have that D fools the smoothed function T1/2f(x) = Ey∼N1/2(x)[f(y)].

Yet another alternative way stating Theorem 19.2 is the following. Recall that the Fourier
expansion of T1/2f(x) is

T1/2f(x) :=
∑
S⊆[n]

2−|S|f̂(S)χS(x).

Also recall that in Homework 1 Q3, we extend the domain of f to the solid cube [−1, 1]n by defining

f(x) :=
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

It is easy to verify that T1/2f(x) = f(x/2), and so the distribution D/2 fools (m, d)-products.
Note that the distribution D/2 is supported on {−1/2, 1/2}n and not {−1, 1}n. In general, it is
easier to construct a distribution on [−1, 1]n that fools any classes of functions. Indeed, note that
f (⃗0) = E[f(U)] and so the constant 0⃗ fools every f . We now give a procedure that converts D/2 to
a PRG.

Theorem 20.1. Let D be a k-wise independent distribution on {−1, 1}n. If ρD fools a family of
function F , where F is closed under restrictions, with error ϵ, then there exists a PRG that fools F
with error ϵ · log(n/ϵ)/ρ2 and seed length log(n/ϵ)/ρ2 ·O(k log n).

For now let us assume ρ = 1/2 and at the end we will mention where the dependence on ρ
appears in the proof.

The idea is to take independent copies of D/2 and use them to take a random walk in [−1, 1]n.
Let X1, . . . ,XT be i.i.d. copies of D/2 ∈ {−1/2, 1/2}n. Consider the random walk Y 1, . . . ,Y T ∈
[−1, 1]n, where for each i ∈ [n] we define

Y t
i :=

{
X1

i when t = 1

Y t−1
i + (1− |Y t−1

i |) ·Xt
i when t > 1

So at each step and at each coordinate, we use Xt
i take a random walk in largest interval centered

at Y t−1
i in [−1, 1]. Note that Y t is a deterministic function of X1, . . . ,Xt.

We will show that (1) each step of the walk induces an error of ϵ to the error of the final PRG,
and (2) the walk converges to the {−1, 1}n in a few steps.

We first prove (1).

Claim 20.2. For every t ∈ [T] and every f ∈ F , we have∣∣∣ E
X1,...,Xt

[f(Y t)]− E
X1,...,Xt−1

[f(Y t−1)]
∣∣∣ ≤ ϵ.

66

Proof. Given Y t−1 = y ∈ [−1, 1]n, we will show how to “recenter” y using random restrictions.
Consider the random restriction Ry : [−1, 1]n → [−1, 1]n, where for each i ∈ [n],

Ry(z)i :=

{
sgn(yi) with probability |yi|
zi with probability 1− |yi|.

Observe that ERy [Ry(z)i] = yi+(1−|yi|)zi, and so by multilinearity of f and linearity of expectation,
we have

f(y + (1− |y|)Xt) = E
τ∼Ry

[f |τ (Xt)]

(where the |·| on y is coordinate-wise). Since F is closed under restriction, we have fτ ∈ F , and so∣∣∣E
Xt

[f(y + (1− |y|)Xt)]− f(y)
∣∣∣ ≤ ∣∣∣ E

τ∼Ry

[fτ (X
t)]− fτ (⃗0)

∣∣∣ ≤ ϵ.

Averaging over Y t−1 completes the proof.

Therefore f (⃗0) ≈ϵ E[f(Y
1)] ≈ϵ · · · ≈ϵ E[f(Y

T)] and a T -step random walk would induce an
error of Tϵ. We now show (2) that Y T gets exponentially close to a vertex in {−1, 1}n.

Claim 20.3. E[(Y T
i)

2] ≥ 1− 2−Ω(T).

We will pick T to be some O(log(n/ϵ)) so that E[(Y T
i)

2] ≥ 1 − ϵ/n, and let our PRG be
Y = Y (X1, . . . ,XT) on {−1, 1}n, where Y i = sgn(Y T

i) for each i ∈ [n]. Let us see how this gives
us a PRG and then we will prove Claim 20.3.

Claim 20.4. |E[f(Y)]−E[f(Y T)]| ≤ ϵ.

Proof. Given Y T , consider the random variable Z ∼ {−1, 1}n, where for each i ∈ [n],

Zi =

{
sgn(Y T

i) with probability 1
2 +

|Y T
i |
2

−sgn(Y T
i) with probability 1

2 − |Y T
i |
2 .

We have E[Z] = Y T , which by linearity of expectation, implies EZ [f(Z)] = f(Y T). Hence,∣∣f(Y T)− f(Y)
∣∣ ≤ ∣∣E

Z
[f(Z)]− f(sgn(Y T))

∣∣
≤ 2 ·Pr

[
Zi ̸= sgn(Y T

i) for some i ∈ [n]
]

≤ 2 ·
n∑

i=1

1

2

(
1− |Y T

i |
)

≤
n∑

i=1

1− |Y T
i |

≤
n∑

i=1

1− (Y T
i)

2.

Averaging over X1, . . . ,XT , we have∣∣∣E[f(Y)]−E[f(Y T)]
∣∣∣ ≤ n∑

i=1

(
1−E[(Y T

i)
2]
)
≤ ϵ.

67

We now prove Claim 20.3.

Proof of Claim 20.3. Our goal is to show that Y T gets closer and closer to {−1, 1}. So a natural
progress measure would be 1− |Y t

i| for t ∈ [T]. We now show that 1− |Y t
i| ≤ (1− |Y t−1

i |)(1−Xt
i).

For notational simplicity, let us write y′ := Y t
i, y := Y t−1

i and x := Xt
i; so we have

1− |y′| = 1− |y + (1− |y|)x|.

By symmetry we can assume y > 0, and we can further x < 0 as otherwise it only gets closer to 1.
We have two cases:

(1) If y > |(1− y)x|, then

1− |y + (1− |y|) · x| = 1− (y + (1− y) · x) = (1− y)(1− x);

(2) if y ≤ |(1− y)x|, then y + (1− |y|) · x ≤ 0 and so

1− |y + (1− |y|) · x| = 1 + (y + (1− |y|) · x) ≤ 1− (y + (1− |y|) · x) = (1− y)(1− x).

Given that 1− |Y t
i| ≤ (1− |Y t−1

i |)(1−Xt
i) and Y t−1 is independent of Xt, a näıve approach would

be to iterate and obtain

1−E
[
|Y T

i |
]
≤

T∏
t=1

(1−E
[
Xt

i

]
).

However, we have E[Xt
i] = 0 and so it gives nothing this way. Looking closer, the Xt’s are i.i.d.

copies of D/2, so we expect half of them to be negative and the other half of them to be positive, in
which case we get

T∏
t=1

(1−Xt
i) = (1 + |D|/2)T/2(1− |D|/2)t/2 = (1− (D/2)2)T/2 ≤ e−Ω(T),

which is what we want. We can prove this formally as follows. Taking square root of both sides, we
have

E
[
(1− |Y t

i|)1/2
]
≤ E

[
(1− |Y t−1

i |)1/2
]
·E
[
(1−Xt

i)
1/2
]

and hence

E
[
(1− |Y T

i |)1/2
]
≤

T∏
t=1

E
[
(1−Xt

i)
1/2
]

≤
T∏
t=1

(
1−E[(Xt

i)
2]
)

≤ e−Ω(T) (11)

where the second last step follows from E[(Xt
i)
k] = 0 for odd k and the Taylor expansion of

(1−Xt
i)
1/2.

By Markov we have (1− |Y T
i |)1/2 ≥ e−Ω(T) with probability e−Ω(T) and this random variable is

always bounded by 1. So E[(Y T
i)

2] ≥ 1− e−Ω(T).

We have proved Theorem 20.1 assuming ρ = 1/2. Going over the proof again, we can see that
the dependence on ρ would appear only in Equation (11), where we would get a bound of e−Ω(ρ2T)

instead of e−Ω(T), and so we need to take T to be O(log(n/ϵ)/ρ2) for general ρ.
In general we can replace the distribution ρD with an object called fractional PRG, which is a

PRG with [−1, 1]n outputs.

68

Definition 20.5 (Fractional Pseudorandom Generators (fPRG)). A function G : {−1, 1}s → [−1, 1]n

is a p-noticeable fractional pseudorandom generator for F with error ϵ if |E[f(U)]−E[f(G(U))]| =
|E[f(U)]− f (⃗0)| ≤ ϵ for every f ∈ F and E[D2

i] ≥ p for every i ∈ [n].

You can verify that the argument we gave so far also gives a generic way to convert a p-noticeable
fPRG for a family F that is closed under restrictions with seed length s and error ϵ to a PRG with
seed length O(log(n/ϵ)/p) · s and error O(log(n/ϵ)/p) · ϵ.

Combining Theorems 19.2 and 20.1 we have the following PRG for product tests.

Corollary 20.6. There exists a PRG that fools (m, d)-products with error ϵ and seed length
O(log(n/ϵ))(d+ log(m/ϵ)) log n.

69

CS229BR: Analysis of Boolean Functions Lecture 21
Harvard University Nov 17 2022

21.1 Fourier Growth

Given a family of functions, we can ask for what ρ and k such that the ρ-noisy k-wise independent
distribution ρD fools F . One sufficient condition is the following measure of the Fourier spectrum.

Definition 21.1 (Fourier Growth). A family of functions F has bounded Fourier growth if there
exists an integer b ≪

√
n such that for every k ∈ [n] and f ∈ F , we have

L1,k[f] :=
∑
|S|=k

|f̂(S)| ≤ bk.

Note that by Cauchy–Schwarz we always have
∑

|S|=k|f̂(S)| ≤
(
n
k

)1/2 ≤ nk/2. So this definition

is indeed non-trivial only when b ≪
√
n.

Claim 21.2. Let D be a log(1/ϵ)-wise distribution on {−1, 1}n. Let F be a family of functions
such that L1,k[f] ≤ bk for every f ∈ F and k ∈ [n]. Then D/b2 fools F with error ϵ.

Proof. This follows straightforwardly from the intuition that D fools the low-degree part and the
“noise” dampens the high-degree part of f .∣∣∣E[f(D/(2b)]− f̂(∅)

∣∣∣ = ∣∣∣∣∣ ∑
|S|>log(1/ϵ)

(
1

2b

)|S|
f̂(S)E[χS(D)]

∣∣∣∣∣
≤

∑
k>log(1/ϵ)

(
1

2b

)k ∑
|S|=k

|f̂(S)|

≤
∑

k>log(1/ϵ)

2−k ≤ ϵ.

One sufficient condition for a family of functions to have bounded Fourier growth is that they
get simplified to a low degree function under a typical random restriction.

Lemma 21.3. Suppose Prτ∼Rρ [deg(f |τ) = d] ≤ (ρt)d for every ρ > 0 and d ∈ [n]. Then
L1,k[f] ≤ (8t)k for every k ∈ [n].

Recall that the degree of a Boolean function is at most its decision tree depth. Therefore from
Lemma 10.1, we can conclude that L1,k[f] ≤ O(w)k for every width-w DNF f .

Proof of Lemma 21.3. We are going to relate the L1,k of f to the L1,k of its restrictions. It is easy
to verify that

L1,k[f] =
1

ρk
E

τ∼Rρ

[
L1,k[f |τ]

]
.

Let L1[f] :=
∑n

d=1 L1,d[f]. Recall in HW1 Q4 we showed that a degree-d Boolean function g has at
most 4d−1 many non-zero coefficients, and so L1[g] ≤ 4d−1. Hence,

E
τ∼Rρ

[
L1[f |τ]

]
=

n∑
d=1

E
τ∼Rρ

[
L1[f |τ] | deg(f |τ) = d

]
· Pr
τ∼Rρ

[
deg(f |τ) = d

]
≤

n∑
d=1

4d−1 · (ρt)d.

70

Therefore, setting ρ = 1/(8t), we have

L1,k[f] =
1

ρk
E

τ∼Rρ

[
L1,k[fτ]

]
≤ 1

ρk
E

τ∼Rρ

[
L1[fτ]

]
≤ (8t)k

n∑
d=1

4d−1 ·
(

t

8t

)d

≤ (8t)k.

We can also bound the Fourier growth of AC0 circuits by showing that the exponential tail
bound in Theorem 13.3 implies degree shrinkage under restrictions.

Lemma 21.4. Suppose W≤k[f] ≤ e−k/t for every k ∈ [n]. Then Prτ∼Rρ [deg(f |τ) = d] ≤ (ρt)d.

Recall that Theorem 13.3 says that if f is computable by a size-m depth-d circuit, then

W≥k[f] ≤ 2 · 2−
k

O(logm)D−1 .

So Lemmas 21.3 and 21.4 together imply that L1,k[f] ≤ O(logm)(D−1)k.

Proof of Lemma 21.4. We bound Eτ∼Rρ [W
=k[f |τ] in two ways. First we have

E
τ∼Rρ

[W=k[f |τ] =
n∑

d=1

E
τ∼Rρ

[
W=k[f |τ] | deg(f |τ) = d

]
· Pr
τ∼Rρ

[
deg(f |τ) = d

]
≥ E

τ∼Rρ

[
W=k[f |τ] | deg(f |τ) = k

]
· Pr
τ∼Rρ

[
deg(f |τ) = k

]
≥ 4−k · Pr

τ∼Rρ

[
deg(f |τ) = k

]
,

where the last step again uses the fact the coefficients of degree-k Boolean function are integer
multiple of 2−(1−k). Now, we relate the W=k[f] to W=k[f |τ] as in the proof of Claim 12.3. We have

E
τ∼Rρ

[
W=k[f |τ]

]
=
∑
U⊆[n]

f̂(U)2Pr[Bin(d, ρ) = k]

≤
∑
d≥k

W=d[f]

(
|U |
k

)
ρk

= ρk · Ik[f]
≤ (ρt)k,

where Ik[f] :=
∑

d≥k

(
d
k

)
W=d[f] is the degree-k total influence of f introduced in HW2 Q1, and

the last step follows from part (d) of the question. Combining the two parts we get that L1,k[f] ≤
(4ρt)k.

71

	Introduction
	Notation
	Fourier expansion
	The parity functions

	Basic Identities
	Linearity Testing
	Proof of Item 2 in thm:linearity-robust
	The BLR algorithm for linearity testing

	Social choice
	Examples of voting rules
	Properties of voting schemes

	Influence
	Formula for Influences

	Total Influence
	Boundary of f
	Average sensitivity
	Spectral sampling

	Noise
	Noise operator

	Low-degree functions
	Fourier concentration
	Measures of closeness

	Learning low-degree functions
	LMN algorithm

	Goldreich–Levin Theorem
	Kushilevitz–Mansour algorithm

	DNFs
	Total influence of DNF

	Random restrictions
	Switching Lemma
	Succinct encoding of witnesses
	An example

	Multi-switching lemma
	Spectral concentration of DNFs
	Spectral concentration of small-depth circuits
	Proof of thm:Tal-ac0

	Bonami's lemma
	Low-degree polynomials are reasonable

	Hypercontractivity
	Hypercontractivity
	Small-set expansion of the noisy hypercube

	The Fourier spectrum of small sets
	FKN theorem
	Bounding the variance of ℓ2

	KKL theorem
	Friedgut Junta Theorem
	Pseudorandom generators
	Bounded independence plus noise
	Connection to space-bounded computation

	Polarizing random walk
	Fourier Growth

